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Abstract

This project investigates whether English Pre-
mier League (EPL) teams from the 2017-18
season exhibit distinctive attacking sequence
patterns, with a particular focus on sequences
leading to shot opportunities. To capture both
spatial and contextual aspects of play, the data
were transformed into distance matrices using
the Fréchet distance for spatial trajectories and
Gower distance for categorical and numerical
features. These representations were combined
to model a latent variable termed "attack pat-
tern", defined through unsupervised clustering
via K-Medoids. A statistical test of indepen-
dence using the Chi-squared test was conducted
to assess the association between teams and
their corresponding attack patterns. Lastly, fur-
ther analysis was conducted focusing on Big
6 clubs and Leicester City, which stand out
among other EPL teams for generating the high-
est number of goals, potentially suggesting a
distinct tactical identity in their scoring pat-
terns.

1 Introduction

Football (or soccer) is the most widely played and
watched sport in the world, with 211 countries af-
filiated with the global organization FIFA. Among
the various leagues around the world, the European
football leagues are often considered the most com-
petitive, both in terms of quality and popularity.
According to Opta’s global rankings, the English
Premier League (EPL) consistently ranks as one
of the strongest leagues in world football, reflect-
ing its global fanbase, market size, and on-field
performance (Analyst, 2024).

One of the reasons for the EPL’s enduring popu-
larity is its dynamic and often unpredictable match
outcomes. Matches where underdog teams de-
feat top-ranked opponents are not uncommon, con-
tributing to the league’s excitement and competi-
tiveness. While many factors can influence such

outcomes—such as player form, injuries, and ref-
ereeing decisions—this study focuses on tactical
differences, particularly attacking strategies, as a
major contributing factor. In modern football, in-
novative tactics such as the use of inverted full-
backs, positional play involving triangular and
square passing structures, goalkeeper participation
in buildup phases, and defensive tactics like ex-
treme low blocks (often referred to as "parking
the bus") have reshaped the way teams construct
goal-scoring opportunities (Carling et al., 2005).

This project aims to analyze these strategic di-
mensions quantitatively by focusing on "attack se-
quences'"—defined as two previous sequences of
passes or events that connect to a shot attempt. By
studying the structure of these sequences across
all teams in the 2017-18 EPL season, the project
seeks to identify whether teams exhibit distinctive
attacking patterns. Leveraging the open-access
event-based soccer dataset curated by Pappalardo
et al. (Pappalardo et al., 2019), this analysis com-
bines spatial and categorical information to define
a latent variable termed attack pattern, which is
then explored through unsupervised clustering and
statistical testing.

2 Data & Pre-processing

2.1 Data

The dataset used in this project is derived from the
open-access event-based soccer data introduced by
Pappalardo et al. (Pappalardo et al., 2019), origi-
nally sourced from WyScout, a leading sports data
provider. This dataset contains spatio-temporal
event logs from several top-tier football leagues
and international competitions. For the purpose of
this project, we focus exclusively on matches from
the 2017-18 season of the English Premier League
(EPL), extracting all relevant event-level data in-
cluding timestamps, event types, player/team infor-
mation, and spatial coordinates. Additional details



about the data structure and collection methodol-
ogy are available in the dataset’s official record,
(Section 9, see here) (Pappalardo et al., 2019).

2.2 Attack Sequence

To answer our central research question—Do EPL
teams exhibit their own unique attack sequence
patterns?—we reconstruct the data so that each
unit of observation corresponds to an attack se-
quence. Specifically, we define an attack se-
quence as the two events immediately preceding
any shot classified as a "goal-scoring opportunity"
(as tagged in the dataset), together with the shot it-
self. This results in a sequence of three temporally
ordered events, which we compress into a single
observation by combining features such as spatial
coordinates, event type, and time.

The motivation behind this construction is that
while goals and assists are typically emphasized
in performance analysis, the events leading up to
these final actions are often undervalued. In partic-
ular, long or incisive passes that initiate promising
movements can be tactically decisive. For instance,
consider the following stylized sequence:

Long pass (20-30m) to penalty box (Defender)
— Short assist pass (Striker)
— Shot / Goal (Midfielder)

Figure 1: Example of a stylized three-event attack se-
quence

In this example, it could be argued that the ini-
tiating pass from the defender plays a crucial role
in the final shot or assist. While soccer is inher-
ently continuous and fluid, isolating these three-
event windows allows us to extract interpretable
and comparable attack patterns across teams. These
sequences serve as the foundation for downstream
modeling and clustering.

Each processed observation encodes this three-
event sequence using a mixture of spatial, temporal,
categorical, and contextual features, which are later
embedded into a distance space for clustering anal-
ysis.

Adding New Features: Progression and Time
Duration

In addition to extracting spatial and event-type in-
formation for each attack sequence, we engineered

two features that capture important tactical dynam-
ics: progression and time duration between events.

Progression Distance and Ratio Advancing the
ball toward the opponent’s goal is a key factor in
increasing the likelihood of creating high-quality
chances. For this reason, we introduce two spatial
metrics: progression distance and progression
ratio.

The progression distance measures the horizon-
tal advancement between consecutive events, com-
puted as the difference in z-coordinates:

Progression Distance = z;41 — x;

This value can be negative, indicating a back-
pass or a ball played away from the opponent goal
side. To normalize progression with respect to over-
all movement, we compute the progression ratio,
defined as:

Ti4+1 — X4
V(@ivr — )% + (yir1 — yi)?

Progression Ratio =

This ratio captures the extent to which a pass
contributes to forward progression relative to its
total travel distance.

Time Duration We also calculate the time
elapsed between consecutive events in a sequence.
Rapid transitions are a hallmark of effective at-
tacking teams, allowing them to catch defenses
off guard. By incorporating event duration fea-
tures, we can explore whether quicker sequences
correlate with more threatening attacks. This re-
flects recent observations in football match analy-
sis suggesting that shorter time intervals between
ball movements can increase offensive effective-
ness (Sarmento et al., 2018).

These engineered features, combined with the
spatial and categorical characteristics of each event,
form a rich representation of attacking behavior
that is used in the subsequent clustering and statis-
tical analysis.

2.3 Distance Matrix

To apply clustering algorithms to sequences of foot-
ball events in later analysis, it is necessary to con-
vert each observation into a pairwise distance rep-
resentation. This transformation allows us to cap-
ture the similarity or dissimilarity between attack
sequences and group them based on underlying pat-
terns. Because the attack sequences in this project
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are composed of both spatial trajectories and struc-
tured features (e.g., event types, time durations,
and outcome labels), we employ two complemen-
tary distance metrics: Fréchet distance for spatial
similarity and Gower distance for mixed-feature
similarity.

Fréchet Distance The Fréchet distance is a well-
established metric for comparing curves or trajecto-
ries, taking into account the location and ordering
of points along the paths. Unlike simpler point-
wise distances, the Fréchet distance considers the
overall shape and directionality of movement, mak-
ing it particularly well-suited for comparing spatial
sequences such as ball progressions in football. In-
tuitively, it can be described as the minimal leash
length needed to connect two entities (e.g., a dog
and its owner) walking along two separate curves
without backtracking (Alt and Godau, 1995).

Gower Distance To compare structured, non-
spatial features that include a mixture of numer-
ical and categorical variables, we use the Gower
distance (Gower, 1971). This metric computes pair-
wise dissimilarities by normalizing numerical vari-
ables (e.g., progression distance, time duration) and
treating categorical variables (e.g., event type, pres-
ence of opponent involved, shot accuracy) using a
simple matching criterion. The Gower distance is
widely used in applications that require clustering
over heterogeneous data types.

Combining Distances To integrate both spatial
and structured similarities into a unified framework,
we normalize each distance matrix with MinMax
scaling and combine them with equal weighting:

Dﬁnal = WFréchet * DNormalized Fréchet

~+ Wgower * DNormalized Gower

In this project, we assign equal importance to
both components:

Dﬁnal =0.5- DNormalized Fréchet
+0.5- DNormalized Gower

This final distance matrix Dgga Serves as the
basis for the clustering analysis in the next stage of
the project.

3  Clustering
3.1 K-Medoids

Clustering is a form of unsupervised learning,
which aims to uncover hidden structure in unla-
beled data by grouping similar observations to-
gether. Unlike supervised learning, where labels
or outcomes guide the algorithm, unsupervised
methods learn patterns purely from the input fea-
tures (Hastie et al., 2009).

In this project, we apply clustering to identify a
latent variable "attack patterns" among EPL teams
based on their shot event sequences. Since there is
no predefined label for what constitutes a tactical
style or attacking identity, unsupervised clustering
provides a natural framework for detecting recur-
ring patterns without supervision. The resulting
clusters serve as candidate representations of dif-
ferent strategic approaches to chance creation.

To perform clustering on our custom distance
matrix discussed in the previous section, we use the
K-Medoids algorithm. K-Medoids is a partitional
clustering method that, like K-Means, assigns each
observation to the nearest cluster center. How-
ever, unlike K-Means, which minimizes squared
Euclidean distances around a mean, K-Medoids
minimizes the sum of dissimilarities around a rep-
resentative observation called the "medoid". This
makes K-Medoids particularly robust to noise and
outliers and allows it to work with arbitrary dissim-
ilarity measures, including precomputed distance
matrices such as those used in this study (Kaufman
and Rousseeuw, 2009).

The number of clusters is a hyperparameter that
we assess using model selection criteria, discussed
in the next section.

3.2 Evaluation & Optimal K Selection

Selecting the optimal number of clusters is a fun-
damental step in clustering analysis. Since clus-
tering is an unsupervised task, we rely on internal
validation metrics that assess the quality of the re-
sulting cluster assignments based on compactness
and separation (Kodinariya and Makwana, 2013).
Two commonly used tools for this purpose are the
Elbow Method and the Silhouette Score.

Elbow Method The Elbow Method evaluates the
total within-cluster dissimilarity (often referred to
as "cost" or "inertia") across various values of K.
As the number of clusters increases, the inertia nat-
urally decreases. However, a sharp change in the



rate of decrease—forming an "elbow"—suggests
a point where adding more clusters yields dimin-
ishing returns. This inflection point is interpreted
as a candidate for the optimal K (Kodinariya and
Makwana, 2013).

Silhouette Score The Silhouette Score quanti-
fies how similar an observation is to its own clus-
ter compared to other clusters. It ranges from —1
to 1, with higher values indicating more coherent
and well-separated clusters. The average silhou-
ette score across all data points provides a mea-
sure of clustering quality, with peaks suggesting
better-defined clustering structures (Kaufman and
Rousseeuw, 2009).

We evaluated the clustering results for K €
[2,20] using both the elbow method and average
silhouette scores.
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Figure 2: Average Elbow & Silhouette Score Plot

From the figure 2, we observed a prominent
"elbow" at K = 7, where the inertia curve levels
off following a steep drop from K = 6. Simultane-
ously, the silhouette score shows a sharp increase at
K =7, reaching its highest value (approximately
0.21), before declining significantly at K’ = 8. This
alignment of both metrics supports K = 7 as the
primary candidate for capturing stable and mean-

ingful cluster structures in the customized distance
matrix.
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Figure 3: UMAP of K-Medoids (K =7)

UMAP To visually assess the clustering struc-
ture in a lower-dimensional space, we applied
Uniform Manifold Approximation and Projection
(UMAP), a non-linear dimensionality reduction
technique that preserves both local and global
structure in high-dimensional data (Mclnnes et al.,
2018). While some central regions in the 2D projec-
tion show overlap among cluster labels likely due
to the compressed nature of the space, we observed
that several well-separated clusters (blobs) were
consistently and exclusively assigned to a single
cluster. This provides qualitative support that the
clustering algorithm, particularly at K = 7, cap-
tured relatively meaningful patterns and maintained
coherence within these subgroups.

4 EPL Team and Attack Pattern

4.1 Translating Research Question into
Mathematical Expression

After defining the latent feature "attack pattern” via
clustering, we return to the original research ques-
tion: Do EPL teams exhibit their own unique at-
tack sequence patterns? To examine this question
statistically, we define two categorical variables.
Assume A = Attack sequence pattern (cluster
label) and T' = EPL team. We then translate the
research question into a probabilistic statement:

PA=a|T=t)=P(A=a) foralla,t?

This formulation asks whether the distribution
of attack patterns is independent of the team iden-



tity—that is, whether the likelihood of observing a
specific attack pattern remains the same regardless
of which team generated it.

4.2 Mathematical Expression to Statistical
Test

The mathematical question above can be inter-
preted as a test for statistical independence between
two categorical variables: EPL team and attack
pattern. To assess this, we first construct a contin-
gency table showing the frequency distribution of
cluster assignments across teams. Then, we apply
two widely used tests for independence: the Chi-
squared test of independence and Fisher’s ex-
act test (Agresti, 2002; Kaufman and Rousseeuw,
2009).

Hy : There is no association between EPL team

and attack pattern (Independent).

H 4 : There is an association between EPL team

and attack pattern.

The results from both tests indicate strong evi-
dence against the null hypothesis. The Chi-squared
test yielded a p-value of 3.10 x 1077, while the
Fisher’s exact test produced a p-value of 0.0001.
Although Fisher’s exact test is known to be conser-
vative for large contingency tables, both results sup-
port the conclusion that there is a statistically sig-
nificant association between EPL teams and their
attack patterns when using a conventional signifi-
cance level of o = 0.05

This suggests that the latent cluster assignments
derived from the shot sequence data meaningfully
differentiate teams, providing statistical support for
the presence of unique attacking styles in the EPL
(See Appendix 1 for more detail).

5 Case Study 1: Big 6 Attack Sequence

In the English Premier League (EPL), the term “Big
6” traditionally refers to six historically dominant
clubs: Arsenal, Chelsea, Liverpool, Manchester
City, Manchester United, and Tottenham Hot-
spur. All six clubs exhibited remarkably similar
attack sequence clustering distributions. Specifi-
cally, Cluster 0 was the most common, followed by
Cluster 3 across all teams (Appendix 2). This sug-
gests some tactical convergence in how top teams
generate opportunity shots.

Cluster 0 sequences were characterized by rela-
tively linear trajectories, often beginning near the
mid-left side of the pitch (from the attacking team’s
perspective) and ending just outside the penalty
area. These sequences frequently featured two con-
secutive simple passes (e.g., Simple pass - Sim-
ple pass) and ended with an accurate shot. This
structure appears to reflect structured buildup play
leading to high-quality chances (Appendix 2).

In contrast, Cluster 3 sequences displayed a
flattened “hat-shaped” trajectory closer to the left
touchline. All final shots in this cluster were inac-
curate, with a 0% goal conversion rate, suggesting
a lower-quality outcome. Notably, the most fre-
quent transition within this cluster was also Simple
pass - Simple pass (Appendix 3).

5.1 Team-Specific Attack Patterns and
Performance

Although these clubs share similar dominant cluster
types, their specific attack patterns and success
metrics vary considerably (Appendix 3):

Arsenal Arsenal frequently relied on the Simple
pass — Smart pass combination, which accounted
for a goal conversion rate of 28% and shot ac-
curacy of 54%. Another prominent pattern was
Touch - Simple pass, which proved more effec-
tive, resulting in a goal conversion rate of 43% and
shot accuracy of 71%.

Chelsea Chelsea’s most common sequence was
Simple pass — High pass, associated with a goal
conversion rate of 29% and shot accuracy of 71%.
However, other patterns attempted by Chelsea
showed relatively low or even zero goal conversion,
suggesting a more limited set of efficient build-up
options.

Liverpool Liverpool frequently employed two
successful combinations: Simple pass — Cross and
Simple pass — Smart pass. The former yielded a
goal conversion rate of 25% and shot accuracy of
46 %, while the latter performed better with a con-
version rate of 40% and accuracy of 67 %. Overall,
Liverpool demonstrated above-average efficiency
across these patterns.

Manchester City Manchester City displayed the
most diverse and balanced attack pattern portfolio
among the Big 6. Three key combinations stood
out: Simple pass — Cross (conversion rate: 46 %,
accuracy: 69%), Simple pass — High pass (conver-
sion rate: 42%, accuracy: 67 %), and Smart pass



— Simple pass (conversion rate: 57%, accuracy:
71%). These figures reflect Manchester City’s abil-
ity to vary their approach while maintaining high
attacking efficiency.

Manchester United In contrast, Manchester
United demonstrated the least variety in attack se-
quence types. Their dominant pattern was Sim-
ple pass — Smart pass, which resulted in a goal
conversion rate of 29% and shot accuracy of 71%.
Despite the limited range, this pattern was executed
with moderate effectiveness.

Tottenham Hotspur Tottenham Hotspur’s attack
sequences suggest a reliance on physical advan-
tages such as speed and aerial ability. The pattern
Simple pass — Cross had a goal conversion rate
of 33% but relatively low shot accuracy at 38 %,
which headers might be done in this sequence. In
contrast, the Acceleration — Smart pass sequence
achieved a high conversion rate of 50% and shot
accuracy of 75%, highlighting its strategic value
in Tottenham’s approach.

Overall, while the Big 6 clubs share common
structural patterns in their most frequent attack se-
quences, variations in pass types, trajectory shapes,
and shot efficiency provide insight into their unique
tactical identities.

5.2 Progression & Event Duration

To better understand how the Big 6 clubs build
up their attacks, we compared their average pro-
gression distances, progression ratios, and event
durations across Clusters 0 and 3. These numerical
features can potentially offer insight into the di-
rectness and tempo of the shot-creating sequences
(Appendix 4 and 5).

Overall, both clusters demonstrated compara-
ble averages and standard deviations in progres-
sion and timing metrics. This similarity aligns
with the dominant pattern identified in both clus-
ters—namely, the frequent use of Simple pass —
Simple pass, a combination often associated with
controlled buildup and moderate tempo.

In Cluster 0, Tottenham Hotspur, Liverpool, and
Manchester City exhibited the highest horizontal
progression between the first and second events,
with average distances close to or exceeding 10
meters and progression ratios above 40%. These
figures suggest a strong emphasis on forward move-
ment early in the sequence. In contrast, Arse-
nal, Chelsea, and Manchester United showed more

modest progression during this phase. Interestingly,
while Liverpool and Chelsea maintained a high
level of progression in the final link between the
second event and the shot (with distances around
11 meters and ratios near 40% ), Manchester City’s
progression in this phase dropped considerably,
with an average distance of only 6.75 meters and a
ratio of 24%. This may suggest that City tended to
penetrate deeper earlier in the sequence and relied
on shorter passes to set up shots closer to goal.

Cluster 3 exhibited generally lower progression
values across all teams. Average progression dis-
tances and ratios between the first and second
events were lower than those in Cluster 0, with the
exception of Manchester United, Manchester City,
and Arsenal, who maintained relatively high move-
ment in this segment (around 9 meters). Chelsea
and Liverpool had the shortest progressions during
this phase. Between the second event and the fi-
nal shot, Liverpool and Tottenham stood out with
longer progression distances (over 10 meters) and
moderately higher ratios. This may reflect the influ-
ence of crosses as second sub-events in these teams’
sequences—a pattern consistent with their tactical
reliance on wide play or physical aerial presence.

A key difference between the clusters also lies in
event duration. Sequences in Cluster 3 generally
took more time to unfold. Average durations be-
tween the first and second events ranged from 2.5
to 2.6 seconds in Cluster 3, compared to 2.1 to 2.2
seconds in Cluster 0. This temporal difference sug-
gests that Cluster O sequences were executed at a
faster tempo—possibly indicating more rehearsed
or high-tempo attacking patterns.

6 Case Study 2: What Makes Leicester
City Different?

Although Leicester City finished 9th in the 2017—
18 EPL table, their offensive output stood out
among all non-Big 6 teams. As shown in the
league summary table (not included here), Leices-
ter scored a total of 56 goals, the most among
all teams outside the traditional Big 6. By con-
trast, most other mid-table teams—such as Crystal
Palace, Everton, and AFC Bournemouth—scored
between 35 and 45 goals.

What makes this even more notable is Leices-
ter City’s dominant clustering label. Unlike other
teams whose attack sequences were most fre-
quently labeled under generic or less effective clus-
ters (e.g., Cluster 3), Leicester City had a majority



of their sequences labeled as Cluster 5. This sug-
gests a fundamentally different type of attacking
pattern that may explain their relatively high goal
output.

6.1 Leicester City’s Cluster 5 Sequences

In this section, we introduce a comparison group of
three non-Big 6 teams that finished the season with
relatively strong mid-table rankings—Everton
(7th, 44 goals), Crystal Palace (11th, 45 goals),
and AFC Bournemouth (12th, 45 goals). These
teams shared two key characteristics: their most
frequent attack sequences were labeled as Cluster
3, and they each recorded approximately 45 goals
over the season.

From the spatial trajectory visualization com-
paring Leicester City and the comparison group,
we observe similarly structured attacking pat-
terns—most notably, a prominent V-shaped buildup
sequence (Appendix 4). However, when we exam-
ine the corresponding sub-event summaries and
performance metrics in Table 6, clear differences
emerge in terms of execution quality and outcomes.

Leicester City’s attack sequences labeled as Clus-
ter 5 reflect a simple but highly effective approach.
Most sequences begin with winning a ground duel
in a defensive zone, followed either by a second
duel in a more advanced area or a direct cross into
the final third. While structurally straightforward,
these patterns were executed with notable preci-
sion: their goal conversion rates consistently ex-
ceeded 35%, and shot accuracy remained high—up
to 100% in some cases. This combination of clar-
ity and efficiency underlines a key tactical strength:
the ability to convert fast, direct transitions into
high-quality chances.

In contrast, the comparison group—whose dom-
inant attack sequences were categorized as Clus-
ter 3—produced strikingly ineffective results. As
previously observed in the Big 6 analysis, Cluster
3 sequences were characterized by 0% goal con-
version and shot accuracy. Despite the spatial
similarities to Leicester’s sequences, the outcome
was consistently unproductive. Their most com-
mon patterns—such as Simple pass — Simple pass
or Cross—tailed to translate into meaningful at-
tacking opportunities.

This contrast highlights a critical tactical dis-
tinction. While both Leicester and the comparison
teams operated in similar zones of the pitch and
even followed comparable structural patterns, Le-
icester’s superior execution in both transition tim-

ing and finishing decisively set them apart. Their
ability to rapidly convert defensive actions into
high-quality chances with minimal buildup likely
played a major role in their significantly higher
goal tally. In contrast, the comparison group re-
lied more heavily on conservative buildup play and
struggled to create or convert dangerous scoring
opportunities.

6.2 Comparison of Cluster 0 Sequences
Between Leicester City & Big 6

When comparing the spatial trajectory visualiza-
tions of Cluster O attack sequences between Le-
icester City and the Big 6 clubs (Appendix 5), we
observe structural similarities but also some notable
distinctions. Leicester’s sequences follow a famil-
iar path but tend to start slightly deeper—around
the halfway line—and exhibit longer progression
distances in both event segments. This spatial be-
havior is consistent with the types of sub-events
involved, which include a greater proportion of
Crosses and High passes, suggesting more vertical
and direct play compared to the Big 6’s emphasis
on short, controlled passing.

While Simple pass events were still commonly
used—bringing their patterns closer to those of the
Big 6—the variety of Leicester’s sub-event combi-
nations remained relatively limited, and the overall
frequency of Cluster 0 sequences was lower. De-
spite this, Leicester’s efficiency was once again
evident. According to the summary statistics
(Appendix 7), their Cluster 0 sequences showed a
notably high progression distance, with averages
of 15.31 meters from the first to second event and
9.50 meters from the second to the shot. These
were accompanied by progression ratios of 56 %
and 37 %, respectively—significantly higher than
those observed for the Big 6 in the same cluster.

In addition to spatial advancement, Leicester’s
sequences also maintained strong execution quality.
Their shots were accurate and frequently converted,
reinforcing the idea that even with fewer attempts
and less stylistic variation, the team was able to cap-
italize on key moments. This further supports the
narrative that Leicester’s attacking identity, though
less complex than that of the Big 6, was highly
effective in generating goals.

6.3 Key Players for Leicester City

To better understand the effectiveness of Leicester
City’s attacking sequences, we examine the players
most and second most frequently involved in the



build-up and finishing phases of Cluster 5 and Clus-
ter 0 sequences. The patterns of player involvement
highlight not only tactical preferences, but also the
individual contributions that made these attacks
successful.

Cluster 5: Direct Transitions and Duels In
Cluster 5, the most frequent and most effec-
tive sequence type for Leicester—Riyad Mahrez
emerged as a key figure, heavily involved in both
the second and final events of the sequence. His re-
peated presence at the end of fast transitional plays
underscores his role as both a creator and finisher.

Christian Kabasele frequently initiated these
sequences by winning ground duels in Leicester’s
defensive third, a key trigger for the transition.
Though not a Leicester player himself, his pres-
ence in the data (likely due to a misclassification or
data merge error) highlights the need for caution in
interpreting raw player tables.

More relevantly, Marc Albrighton and De-
marai Gray were frequently involved in the sec-
ond event, typically delivering accurate crosses to
Mabhrez or the final shooter. Notably, the sequences
involving crosses had a 67 % goal conversion rate
and 100% shot accuracy, indicating that Mahrez’s
ability to time runs and finish from wide service
played a central role in Leicester’s transition-based
attack (Appendix 8).

Cluster 0: Structured Buildup and Involving
the Back Line In Cluster 0 sequences, those that
were more structured and resembled Big 6 attack-
ing patterns—Jamie Vardy and Shinji Okazaki
appeared most often in the final shot event, with
Mabhrez again involved frequently in the second
pass. The Mahrez—Vardy connection, in particular,
stood out, reinforcing the well-established partner-
ship between Leicester’s most creative and most
clinical attackers.

Ben Chilwell and Harry Maguire were key
players in initiating attacks, contributing often
to the first event with Simple passes or High
passes. Their regular presence in the buildup
reflects Leicester’s tendency to involve defend-
ers—particularly full-backs and ball-playing center-
backs—in structured attacking sequences. Their
involvement further reflects their role as a transi-
tional conduit between defense and attack.

Another notable pattern was the consistent pres-
ence of Marc Albrighton in both clusters. In Clus-
ter 0, he delivered several key passes in the sec-
ond event (e.g., High pass — Simple pass) that

led to goals by Okazaki and Vardy. His role as a
wide playmaker bridging the buildup and finish-
ing phases highlights his versatility and value in
multiple attacking contexts (Appendix 9).

Overall, the analysis reveals a core attacking trio
of Mahrez, Vardy, and Albrighton—each play-
ing complementary roles across both direct and
structured sequences. Mahrez acted as a hybrid
creator-finisher, Vardy as a consistent final option,
and Albrighton as a service provider from wide
areas. In support, defenders like Chilwell and
Maguire played an unexpectedly active role in shap-
ing buildup patterns, reinforcing the team’s tactical
flexibility and player involvement across phases of

play.
7 Discussion

7.1 Conclusion

This project aimed to explore whether teams in the
English Premier League (EPL) exhibit unique pat-
terns in their attacking sequences, particularly in
the buildup to opportunity shots. Rather than focus-
ing on individual player metrics or team statistics
alone, we adopted a structural approach—defining
a latent variable, attack pattern, based on a com-
bination of spatial coordinates, event types, and
timing between events.

We began by constructing meaningful observa-
tions from the raw match data by extracting two
events prior to each shot classified as an opportu-
nity. New features such as horizontal progression
distance, progression ratio, and event duration were
engineered to enhance the representation of attack
sequences. These sequences were then transformed
into a pairwise distance matrix using a combination
of Fréchet distance (for spatial patterns) and Gower
distance (for mixed-type features). The resulting
distance matrix was used to define clusters via K-
medoids, capturing latent attack patterns without
supervision.

Statistical tests including Chi-squared and
Fisher’s exact test revealed a significant associa-
tion between a team’s identity and its attacking
pattern distribution. In other words, the probability
of observing a given attack pattern varied meaning-
fully by team—supporting the hypothesis that EPL
clubs tend to rely on distinct attacking strategies.

The case studies added practical insight into
these patterns. Analysis of the Big 6 clubs revealed
that while their dominant sequences often belonged



to the same cluster (Cluster 0), subtle differences
emerged in pass types, progression profiles, and
finishing quality. For instance, Manchester City
demonstrated the greatest tactical variety, while
teams like Manchester United relied on more pre-
dictable sequences.

Leicester City, in contrast, stood out among non-
Big 6 clubs. Despite finishing 9th in the league,
they scored the most goals outside the Big 6—an
outcome strongly linked to their distinct use of
Cluster 5. These sequences were characterized by
fast transitions initiated by ground duels and fin-
ished by high-efficiency passes or crosses, often in-
volving Mahrez and Vardy. Compared to mid-table
peers like Crystal Palace or Bournemouth—whose
dominant Cluster 3 sequences yielded 0% shot ac-
curacy—Leicester’s direct but polished approach
proved notably more effective.

Together, the findings demonstrate how com-
bining spatial-temporal modeling with statistical
reasoning can uncover meaningful differences in
tactical behaviors across teams, offering not only
academic value but also practical implications for
scouting and performance analysis.

7.2 Limitation

While the project yielded meaningful insights into
attacking patterns across EPL teams, several limita-
tions should be acknowledged—primarily related
to data quality and the interpretability of the clus-
tering outcomes.

First, the spatial coordinate system in the
dataset—while standardized—may lack the granu-
larity necessary to capture subtle tactical nuances.
The pitch coordinates do not adjust for variations
in stadium dimensions, which can affect spacing,
player behavior, and tactical structure. In addition,
the positions of events are often recorded at the mo-
ment of ball contact rather than completion, which
could slightly misrepresent the actual trajectory
and flow of play. These limitations in spatial preci-
sion may introduce noise into the Fréchet distance
calculations used to quantify trajectory similarity.

Second, while clustering offered a useful way
to define latent attack patterns, the overall silhou-
ette scores—particularly across higher values of
K—were relatively low. This suggests that the
structure of the data may not naturally lend itself
to clear, well-separated clusters. As a result, the
interpretability and reliability of some cluster as-
signments should be treated with caution. It is
possible that certain teams’ patterns lie on a con-

tinuum of styles rather than fitting into discrete
groups, which could limit the effectiveness of hard
clustering methods such as K-medoids.

Together, these limitations highlight that while
the results provide useful directional insights, they
may not fully capture the complexity of tactical
behavior or the continuous nature of attacking strat-
egy in football.

7.3 Future work

Several avenues remain for extending and enriching
the current analysis. One of the most critical next
steps involves the incorporation of additional con-
textual and spatial information—particularly that
which captures player positioning beyond the im-
mediate ball interaction. The current dataset only
provides spatial coordinates for events involving
the ball, leaving out the positions of other play-
ers on the pitch. This limits the ability to evaluate
off-ball movement, defensive structure, and press-
ing patterns, all of which are essential components
in modern football analysis. Future studies could
benefit from datasets that include full-pitch player
tracking data, enabling features such as player den-
sity, formation shape, or space creation metrics.
Additional modern features such as expected goals
(xG) or pressure metrics would further enhance the
tactical resolution of the models.

Another direction would be to expand the focus
beyond attacking sequences to include defensive
analysis. For example, Burnley finished 7th in the
league—outperforming several clubs with greater
attacking outputs—primarily due to their strong
defensive performance, conceding the fewest goals
outside the Big 6. Unfortunately, the current dataset
lacks sufficient defensive tracking information to
study their tactics in detail. A dedicated investi-
gation into “What makes Burnley successful?”,
with attention to spatial compactness, dueling suc-
cess, and pressing resistance, could offer a com-
pelling contrast to the attack-focused lens used in
this study. More broadly, future work could also
explore the balance between offensive and defen-
sive efficiency as factors of league success—testing
whether defensive solidity is a stronger predictor
of league position than scoring ability.

With richer data and more refined modeling
tools, future analyses could move beyond descrip-
tive clustering to predictive and evaluative frame-
works, helping coaches, analysts, and scouts better
understand the underlying mechanics of success in
football.
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Appendix 1: Distribution of Attack Pattern by Team
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Total

Max

2nd Max

Proportion

AFC Bournemouth

Crystal Palace
Everton
Huddersfield Town
Leicester City
Liverpool
Manchester City
Manchester United
Newcastle United
Southampton
Stoke City
Swansea City
Tottenham Hotspur
Watford

West Bromwich Albion
West Ham United

37

285
396
251
259
378
289
231
234
269
418
467
306
279
284
252
193
360
285
244
236
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0.189
0.255
0.183
0.197
0.183
0.166
0.186
0.188
0.190
0.213
0.270
0.212
0.211
0.194
0.183
0.192
0.239
0.207
0.189
0.161

Table 2: Distribution of Attack Pattern with Maximum & 2nd Maximum Patterns by Team



Average Attack Sequence of Big 6 Teams (Cluster 0)

Team

Man City
—— Man United
Tottenham
Liverpool
—— Chelsea

Arsenal

Appendix 2: Spatial Trajectories of Average Attack Sequences for Big 6 Clubs (Cluster 0)

Average Attack Sequence of Big 6 Teams (Cluster 3)

Big 6 Teams
Man City
Man United
Tottenham
—— Liverpool
—— Chelsea
Arsenal

Appendix 3: Spatial Trajectories of Average Attack Sequences for Big 6 Clubs (Cluster 3)



Team First Event Second Event Count Goals Goal %  Accuracy
Simple pass 70 8 0.11 0.543

Simple pass Smart pass 18 5 0.28 0.667

Cross 13 2 0.15 0.462

Simple pass 8 1 0.12 0.375

Arsenal Smart pass Cross 7 2 029 0.571
Touch Simple pass 7 3 0.43 0.714

Ground attacking duel ~ Simple pass 6 2 0.33 0.833

Simple pass High pass 6 0 0.00 0.500

High pass Cross 5 2 0.40 0.400

Simple pass 36 2 0.06 0.556

Simple pass Smart pass 14 2 0.14 0.571

Chelsea ple past Cross 13 1 0.08 0.462
High pass 7 2 0.29 0.714

Ground attacking duel ~ Simple pass 5 1 0.20 0.600

Simple pass Acceleration 5 0 0.00 0.600

Simple pass 41 4 0.10 0.512

Simple pass Cross 24 6 0.25 0.458

piep Smart pass 15 6 0.40 0.667

Liverpool High pass 9 1 0.11 0.667
. Cross 7 2 0.29 0.571

Ground attacking duel ;10 bas 6 2 033 0.500

Simple pass Touch 6 0 0.00 0.333

Acceleration Simple pass 5 2 0.40 0.600

Simple pass 64 9 0.14 0.516

Simple pass Cross 26 12 0.46 0.692

ple pass Smart pass 21 4 0.19 0.619

High pass 12 5 0.42 0.667

Smart pass Cross 11 2 0.18 0.455

Manchester City o Simple pass 8 012 0.375
High pass Simple pass 7 1 0.14 0.429

Smart pass Simple pass 7 4 0.57 0.714

Acceleration Simple pass 6 1 0.17 0.667

Corner Simple pass 6 2 0.33 0.500

Ground attacking duel ~ Simple pass 5 0 0.00 0.800

Simple pass Touch 5 0 0.00 0.200

Simple pass 42 6 0.14 0.524

. Simple pass Cross 8 1 0.12 0.250

Manchester United Smart pass 7 2 029 0.714
Ground attacking duel ~ Cross 5 2 0.40 0.600

Simple pass 37 2 0.05 0.595

Simple pass Cross 21 7 0.33 0.381

Smart pass 16 1 0.06 0.688

Tottenham Hotspur  Acceleration Smart pass 4 0.50 0.750
Ground attacking duel ~ Simple pass 7 1 0.14 0.571

Simple pass High pass 7 1 0.14 0.429

piep Touch 5 0 000 0.400

Smart pass Simple pass 5 3 0.60 0.600

Table 3: Big 6 Attack Sequence Event & Stats (Combined Clusters)



Team Count progress_dist_12 progress_ratio_12 progress_dist_23 progress_ratio_23 event_duration_12 event_duration_23

Arsenal 101 8.93 (13.44) 0.33 (0.58) 7.1 (11.42) 0.36 (0.52) 2.16 (1.45) 1.69 (0.82)
Chelsea 69 9.36 (17.64) 0.32 (0.55) 12.14 (13.3) 0.4 (0.44) 221 (1.28) 2.08 (1.33)
Liverpool 89 10.11 (14.75) 0.46 (0.52) 11.07 (13.05) 0.41 (0.46) 223 (1.33) 1.98 (1.01)
Manchester City 126 9.94 (14.82) 0.42 (0.58) 6.75 (13.08) 0.24 (0.49) 2.4(1.22) 1.84 (0.93)
Manchester United 65 6.98 (13.4) 0.29 (0.51) 8.52 (11.53) 0.4 (0.43) 2.17 (1.36) 1.83 (0.9)
Tottenham Hotspur 86 11.45 (15.64) 0.43 (0.53) 8.35 (11.89) 0.31 (0.46) 2.68 (1.39) 1.9 (1.03)

Table 4: Big 6 Average Progress & Event Duration of Cluster 0 (Standard Deviation in Parentheses)

Team Count progress_dist_12 progress_ratio_12 progress_dist_23 progress_ratio_23 event_duration_12 event_duration_23
Arsenal 79 8.80 (12.19) 0.34 (0.55) 2.92(9.91) 0.10 (0.46) 2.38 (1.73) 1.69 (0.85)
Chelsea 68 5.62 (18.77) 0.13 (0.58) 4.81 (14.79) 0.06 (0.52) 2.49 (2.35) 1.61 (1.02)
Liverpool 78 5.99 (14.95) 0.23 (0.58) 10.40 (14.14) 0.38 (0.51) 2.77 (3.01) 1.94 (1.02)
Manchester City 88 9.20 (15.41) 0.37 (0.58) 4.86 (11.72) 0.17 (0.48) 2.54 (1.38) 1.79 (0.79)
Manchester United 57 9.33 (16.74) 0.26 (0.63) 3.56 (11.14) 0.10 (0.48) 2.56 (2.01) 1.94 (0.92)
Tottenham Hotspur 60 7.43 (10.71) 0.34 (0.57) 10.55 (14.30) 0.33 (0.43) 2.65 (1.52) 1.93 (1.03)

Table 5: Big 6 Average Progress & Event Duration of Cluster 3

Team First Event Second Event Count Goals Goal %  Accuracy
. . . Ground attacking duel 28 10 0.36 0.75
Leicester City ~ Ground defending duel pass Cross 6 4 067 1
Simple pass Simple pass 40 0 0.00 0.00

plep Cross 17 0 000 0.00

Comparison . Cross 9 0 0.00 0.00
Ground attacking duel Simple pass 9 0 000 0.00

Simple pass Smart pass 7 0 0.00 0.00

Ball out of the field Corner 6 0 0.00 0.00

Simple pass High pass 6 0 0.00 0.00

Acceleration Simple pass 5 0 0.00 0.00

Table 6: Leicester City vs Comparison Group Attack Sequence Event & Stats

Cluster Count progress_dist_12 progress_ratio_12 progress_dist_23 progress_ratio_23 event_duration_12 event_duration_23

0 48 15.31 (14.09) 0.56 (0.45) 9.5 (12.13) 0.37 (0.48) 2.87 (1.46) 1.59 (0.88)
5 51 8.18 (33.78) 0.28 (0.62) 5.86 (19.04) 0.15 (0.51) 3.29 (10.68) 1.33 (0.85)

Table 7: Leicester City Average Progress & Event Duration



Average Attack Sequence of Leicester City vs Comparison (Cluster 5 vs 3)

Team
Leicester City
—— Comparison

Appendix 4: Spatial Trajectories of Average Attack Sequences for Leicester City vs Comparison

Average Attack Sequence of Leicester City vs Big 6 (Cluster 0)

Team

Leicester City

Man City
—— Man United
—— Tottenham
Liverpool
Chelsea
Arsenal

Appendix 5: Spatial Trajectories of Average Attack Sequences for Leicester City vs Big 6



First Event Second Event Player 1 Player 2 Player 3

Ground defending duel ~ Ground attacking duel ~ C. Kabasele /J. Gomez R. Mahrez R. Mahrez
Cross D. Janmaat/J. Gomez  D. Gray / M. Albrighton =~ R. Mahrez

Table 8: Key Player Involvement in Leicester City’s Cluster 5 Sequences (Most Involved / Second Most Involved)

First Event Second Event  Player 1 Player 2 Player 3
Simple pass Simple pass Adrien Silva / B. Chilwell R. Mahrez R. Mahrez

High pass H. Maguire M. Albrighton J. Vardy
High pass Simple pass M. Albrighton R. Mahrez S. Okazaki
Simple pass Cross B. Chilwell / M. Albrighton J. Vardy S. Okazaki

Smart pass H. Maguire Adrien Silva / K. Theanacho I. Slimani /J. Vardy
Ground attacking duel Cross D. Gray D. Gray A. King /J. Vardy
Acceleration Simple pass ~ R. Mahrez R. Mahrez K. Iheanacho

Table 9: Key Player Involvement in Leicester City’s Cluster 0 Sequences (Most Involved / Second Most Involved)
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