
Lyric Generation with Bidirectional Long
Short-Term Memory

Dylan Bowman
Department of Mathematics

University of Illinois
Urbana, Illinois

dcbowma2@illinois.edu

Junseok Yang
Department of Statistics

University of Illinois
Urbana, Illinois

jyang247@illinois.edu

Abstract—This project explored a widely used neural network
architecture for text generation, which is Long short-term mem-
ory (LSTM), using song lyrics data to generate new lyrics. The
data was subset based on genres and further cleaned to be
suitable for our LSTM model. Songs with country genre were
trained into the model and successfully generated new lyrics.

Index Terms—RNN, LSTM, text generation

I. INTRODUCTION

For our project, we used a Long Short-Term Memory
(LSTM) architecture to generate song lyrics given user input
for genre and a base phrase to start off with. It is a specific
instance of next-token prediction, which is a well-documented
task, and the project is interesting because it involves using a
widely used and effective deep learning architecture to tackle
a fun problem. We are interested in how the lyrics generated
from the model be similar or dissimilar and analyze any
noticeable features based on different genres.

We will use a dataset that contains approximately 5 million
songs’ lyrics and other features such as genre from Kaggle[5].
For the task of lyric prediction, an analogous project has been
done using LSTMs in the domain of rap lyric generation[6],
but we plan to span across a broader array of genres and use
a larger corpus.

II. RELATED WORK

Constructing a background about natural language process
(NLP) and text data is required, and the book written by
Bird et al introduces about these materials well. Some data
preprocessing steps will be referred to the book[2]. Connected
to this, it is also necessary to have a solid understanding about
deep learning and text generation, and diverse information
from basic guidelines to experiments about recurrent neural
network and long short-term memory (LSTM) can be referred
from the work by Graves[4]. For constructing a LSTM model,
we chose to use a simple Long short-term memory structure
introduced by Bitvinskas, and further modify and develop into
our own model with PyTorch[3].

Similar project was done and published by Potash et al,
which is about ghostwriting and creating a LSTM model to
generate rap lyrics. By referring to the previous work, we can
get some useful information and limitation of their project.
Based on this, our project can not only be able to set and

navigate to the right direction, but also build more sophisti-
cated LSTM model[6]. Lastly, Bergstra and Bengio introduce
and compare few different search methods for hyperparameter
tuning process for neural networks, and it is crucial for our
project to find the best optimization values to generate more
accurate and less grammatic error lyrics[1].

III. DATA

The data was sourced from a Kaggle repository containing
a dump of all the lyrics on Genius. It contains approximately
5 million songs with 8 variables such as ‘artist’, ‘tag’, and
‘lyrics’ in .csv format. A sample can be seen below:

Title Tag Artist Year Lyrics
Killa Cam Rap Cam’ron 2004 [Chorus: Opera Steve ...
Can I Live Rap Jay-Z 1996 [Produced by Irv Got...
Forgive M... Rap Fabolous 2003 Maybe cause I’m eatin...
Down an... Rap Cam’ron 2004 [Produced by Kanye W...
Fly In Rap Lil Wayne 2005 [Intro] So they ask m...

A. Pre-Processing

To prepare a suitable dataset for our model, few pre-
processing steps are necessary. Due to high and complex
computational costs, it was inevitable to subset the dataset
into a smaller size. We first created several csv files based on
6 different genres (‘tag’) and tested cleaning process with one
of the subset datasets.

B. Cleaning

Using one of the subset datasets, regular expressions
(‘regex’) were used to tidy the ‘lyrics’ variable data (Bird
et al.). Some unnecessary patterns were detected in the lyrics
such as ‘verse 1’ or ‘chorus’ which indicate different parts
in a song. These patterns are one of the obstacles that would
hinder the LSTM model to generate interpretable lyrics. After
the detaching step, two more stages of removing punctuation
and separating sentences by a new line were processed.

IV. PRELIMINARY TECHNICAL DETAILS

A recurrent neural network (RNN) is a neural network
that takes its previous outputs as parameters in order to
process sequential data. Long short-term memory (LSTM)
is a type of recurrent neural network (RNN) that is able to



learn and remember long-term dependencies in data. Unlike
traditional RNNs, which can have difficulty learning long-
term dependencies, LSTMs have a special structure that allows
them to remember information for longer periods of time. This
makes them well-suited for tasks such as language modeling,
machine translation, and speech recognition, where the input
data may have long-term dependencies. LSTMs are a type of
artificial neural network that is widely used in deep learning
applications.

Specifically, LSTM uses a “forget” gate to select which data
to hold onto over long periods of time. The idea is that the
module takes in three inputs, the previous output ht−1, the
previous state vector Ct−1, and the new sequential value Xt.
The LSTM module then outputs the next value in the output
sequence ht and the state vector Ct, as well as feeding ht into
the output of the whole model. The internals of the modules
can be visualized as so, using a graphic from Olah[7]:

Most importantly, Xt is concatenated with Xt−1 and then
combined with the long-term state vector Ct−1. This allows
the architecture to incorporate both long and short-term infor-
mation into its output ht.

For our preliminary work, we used the default PyTorch
settings for the hyperparameters, except for dropout of 0.2
and 3 layers. Our model was a unidirectional LSTM with
one layer, using bias weights. For more information, see the
PyTorch documentation[8]. We used cross-entropy loss as our
loss function since the task is fundamentally one of next-word
classification. The way that it works is that given the long-
term state and short-term state, the model outputs a softmax
distribution over all words in the corpus, with each word
assigned the probability that it is the next word. For the
generative task, we just sample from this softmax distribution.
A past example of cross-entropy loss for LSTMs can be found
in Mardanirad et al.[9].

V. TRAINING DETAILS

To train our LSTM, we accessed the HAL cluster from the
NCSA at the University of Illinois. We ran our training script
directly from the browser interface. Our train time improved
significantly on the HAL GPUs, going from a number of hours
to a number of minutes.

After verifying that the trained models functioned properly,
we trained our LSTM model on 4 different genres (rap,
pop, R&B, country) using different values for the sequence
length and batch size hyperparameters. Sequence length is the
number of time steps that the network is trained on. This is
an important parameter to set when training an LSTM, as it
determines how much past information the network can use
to make predictions. If the sequence length is too short, the

LSTM may not have enough information to accurately model
the dependencies in the data. If the sequence length is too
long, the LSTM may have difficulty learning and generalizing
to new data. Batch size is the size of batches used in the Adam
optimizer we employed. We used values of 2 and 3 for our
sequence length, and we used batch sizes of 128 and 256. We
trained 16 models in all.

VI. RESULTS

Our results can be divided into two parts: the training/testing
empirical results, and the lyrics that we were able to generate.

A. Training and Testing Results

The loss for each of our models can be viewed here:



In addition to tracking the training loss, we also measured
the next-word prediction of the models for R&B and country
(unfortunately, the pop and rap datasets were too large and
unwieldy to perform this analysis on our local devices). The
results from this test can be viewed:

R&B Accuracy Batch Size = 128 Batch Size = 256
Seq. Length = 2 1.03% 11.93%
Seq. Length = 3 1.81% 5.96%

Ctry. Accuracy Batch Size = 128 Batch Size = 256
Seq. Length = 2 0.55% 0.20%
Seq. Length = 3 0.22% 6.56%

Given that there were thousands of words in the corpus, we
are pleased with the accuracy of these models.

B. Generated Work

With the model that we were able to train, we were able to
generate songs, such as the following:

aware couldnt find the lost that fear
in night daylight though i long under you
wishing the halfhearted man im coming at love with
me
when her head are remain in the wind man
its a addict town in your hand i can never leave being
cause the beautiful trip i was born at me
and you got starin is going to got a glimpse
and a janitor sound to alabama
what mamas twenty black true
as our rhyme one jesus stone to blue scene
its parton country busier train in

For users to input their own sample text and have it
completed by our songwriter, we also built a gradio interface:

VII. OTHER POSSIBLE APPROACHES

While LSTMs proved adequate for this task, they are quite
old and other approaches may have been more effective. We
will review alternate approaches here.

The main alternative we could have used would have been
a transformer model like OpenAI’s GPT, which has been
making waves in pop culture. One advantage of transformer
architectures over LSTMs for text generation is that they are
able to capture long-range dependencies in the input data more
effectively. This is because transformers use self-attention
mechanisms, which allow the model to weigh the importance
of different input tokens at each time step. This makes it
possible for the model to attend to relevant information from
earlier in the input sequence, even if that information is far
away in terms of the number of time steps. LSTMs, on the
other hand, use fixed-sized memory cells, which can make it
difficult for them to remember information from long ago in
the input sequence.

Another advantage of transformers is that they are generally
more efficient to train and use than LSTMs. This is because
transformers are parallelizable, meaning that different parts
of the model can be trained and evaluated simultaneously on
different CPUs or GPUs. This makes it possible to train very
large transformer models, which can achieve state-of-the-art
performance on many tasks. In contrast, LSTMs are typically
trained and evaluated sequentially, which can make it more
difficult to scale them to large datasets.

Another architecture we could have used is the diffusion
model. A diffusion model introduces noise to the data so
that the data distribution can be learned without overfitting.
Diffusion models are well-suited for generative tasks like text
generation because they are able to learn the relationships
between different words since they represent each word as
a node in the model.

Had we more time, we would have trained our models on
the entire dataset rather than the small slice that we took.
Models like ChatGPT owe their strength to the size of their
training corpus, and it would have been interesting to see how
far our model could have gone with a larger training set.



VIII. APPENDIX

A. Code

Our code repository can be accessed at https://github.com/
dylanbowman314/lstm-lyrics-generation.

IX. CONTRIBUTIONS

Junseok - 50 - Wrote up most of report, found and read past
literature, planned architecture and hyperparameters, logged
into HAL and trained models, created graphics.

Dylan - 50 - Set up GitHub repository, cleaned data, ran
model with stronger computer, ran tests, wrote majority of
final report.

REFERENCES

[1] Bergstra, James, and Yoshua Bengio. “Random
Search for Hyper-Parameter Optimization.” Jour-
nal of Machine Learning Research, 12 Feb. 2012,
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf.

[2] Bird, Steven, et al. Natural Language Processing with Python. O’Reilly
Media, 2009.

[3] Bitvinskas, Domas. Pytorch LSTM: Text Generation Tutorial, 15 June
2020, https://closeheat.com/blog/pytorch-lstm-text-generation-tutorial.

[4] Graves, Alex. “Generating Sequences with Recurrent Neural Networks.”
ArXiv.org, 5 June 2014, https://arxiv.org/abs/1308.0850.

[5] Nayak, Nikhil. “5 Million Song Lyrics Dataset.” Kaggle, 22 Apr.
2022, https://www.kaggle.com/datasets/nikhilnayak123/5-million-song-
lyrics-dataset

[6] Potash, Peter, et al. “Ghostwriter: Using an LSTM for Auto-
matic Rap Lyric Generation.” Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, 2015,
https://doi.org/10.18653/v1/d15-1221.

[7] Olah, Chris. “Understanding LSTM Networks.” Understanding
LSTM Networks - Colah’s Blog, https://colah.github.io/posts/2015-08-
Understanding-LSTMs/.

[8] ”LSTM PyTorch 1.13 Documentation”. py-
torch.org/docs/stable/generated/torch.nn.LSTM.html.

[9] Mardanirad, S., Wood, D.A. Zakeri, H. The application of deep
learning algorithms to classify subsurface drilling lost circulation
severity in large oil field datasets. SN Appl. Sci. 3, 785 (2021).
https://doi.org/10.1007/s42452-021-04769-0

https://github.com/dylanbowman314/lstm-lyrics-generation
https://github.com/dylanbowman314/lstm-lyrics-generation

	Introduction
	Related Work
	Data
	Pre-Processing
	Cleaning

	Preliminary Technical Details
	Training Details
	Results
	Training and Testing Results
	Generated Work

	Other Possible Approaches
	Appendix
	Code

	Contributions
	References

