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Project Abstract

This project focuses on pollutants such as PM, 5 that impact the chemical composition of
the air, potentially impact flora and fauna in a harmful manner. The aim is to identify specific
attributes, such as precipitation and humidity, temperature, concentrations of various greenhouse
gasses such as SO, and O;, time of day, and seasonal changes that might influence PM, s levels.
To effectively relay this information, a complete linear regression analysis and variable selection
techniques are completed. In addition to regression models, diagnostics are performed to
evaluate model assumptions and investigate if there are any observations with a large influence
on the analysis. Lastly, machine learning techniques, such as cross—validation, regularization and
so on, are used to train and test the model on various iterations. The ultimate goal of this analysis
is to identify variables that impact the PM, 5 concentration in the atmosphere and predict future
pollutant levels to increase caution and suggest human behavioral changes to mitigate such
problems.
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Introduction

Climate change and fluctuations of pollution in the atmosphere has been studied for
decades now, since it has a tremendous impact on human health, as well as natural rehabilitation
and growth. A large part of China is experiencing substantial amounts of air pollution with
impactful fine particulate matter, or PM. This study used the dataset collected in Gucheng,
Beijing, with PM, 5 and PM,,, where the numbers refer to fine PM with aerodynamic diameters
of less than 2.5 and 10 micrometers (um) respectively [1]. The official air quality statistics,
which are taken from averaging hourly readings, are composed using PM, 5 data from
state-controlled monitoring sites.

Description of the relevant data

The goal of this project is to look at 6 main air pollutants and 6 relevant meteorological
variables from 12 nationally-controlled air-quality monitoring sites in Beijing, China. The
meteorological data in each air-quality site are matched with the nearest weather station from the
China Meteorological Administration. The time period is from March 1st, 2013 to February 28th,
2017. We used the UCI Machine Learning Repository to obtain our data, and after viewing the
peer-reviewed academic journal where this data came from, we are convinced that it is accurate.

The kinds of variables that significantly impact PM, s can be broken down into various
“groups’:

e Time variables: Year, Month, Day, and Hour

e Various pollutants and greenhouse gasses: PM, 5, PM,,, NO,, CO, O;

o Weather variables: TEMP (temperature in °C), PRES (pressure in hPa), RAIN (mm of
rain fallen/precipitation), wd (wind direction, such as NW, N, SW, S, etc.), and WSPM
(wind speed per minute). There were a few more variables such as DEWP (dew point
temperature), but they were not significant to this dataset.

To determine which data affects the PM, s concentration in the atmosphere, we performed
visualizations determining these relevant variables. Not all the data is relevant for the results we
are trying to achieve, since we want to observe the most harmful pollutants in the atmosphere,
climate conditions that impact or exacerbate the spread of these pollutants, and the
concentrations of these chemicals. Even though we kept the missing values in our visualizations
s0 as to not lose too many data points, we are only factoring in necessary variables.

The variables that we need are as follows in Table 1, this data is based on which variables
are statistically significant.



Variable name Description
year year of data in this row
month month of data in this row
day day of data in this row
hour hour of data in this row
PM, PM, 5 concentration (ug/m”3)
PM,, PM,, concentration (ug/m”3)
NO2 NO, concentration (ug/m”"3)
03 O; concentration (ug/m”3)
CO CO concentration (ug/m”3)
TEMP Temperature (degree Celsius)
PRES Pressure (hPa)

RAIN precipitation (mm)
wd wind direction
WSPM wind speed (m/s)
Table 1: Description of variables that influence pollutant concentration
Methodology

We mainly applied exploratory analysis and linear regression, with some other machine
learning techniques on the Gucheng data to examine significant predictors affecting the PM, s
data and develop a possible model to predict the PM, s with information from the previous day.
We used R to do our data analysis and reports, as well as the statistical methods explained below:

e Linear regression:

o Diagnostics: Outliers, assumptions of linearity/constant variance/normality.
Essentially, the diagnostics show us any points that may influence the dataset and
how to modify the model to avoid those trends and behaviors.

o Variable selection methods (Forwards and Backwards methods)



o Multicollinearity
e Machine Learning methods
Cross validation

o

Regularization
K-nearest neighbors algorithm

O

O

Multinomial Regression

The number of observations with missing values was 7.3% in relation to the overall size,
so we initially considered dropping these values. However, after further consideration dropping
all observations with missing values could affect model performance. Due to this, we concluded
that we would only drop observations with missing PM, s values. This restructured dataset is
what we utilized in creating visualizations in relation to the various predictors, as well as
regression modeling.

In addition, a new categorical variable, PM2.5 Type, was added to the new dataset based
on the critique that with the PM, 5 concentration lower than 35 ug/m’, the condition was reported
as Low. With the PM, 5 concentration higher than 35 ug/m’, but lower than 75 ug/m’, the
condition was reported as Medium. With the PM, 5 concentration higher than 75 ug/m’, but lower
than 105 ug/m?, the condition was reported as High. Lastly, with the PM, 5 concentration higher
than 105 ug/m?, the condition was reported as Dangerous.

Regarding our datasets for the purpose of creating visualizations, we created 4 different
tibbles to represent predictor relationships with PM 2.5. To start, the visualization datasets were
established using the maximum and average value of PM, 5 and average value of all the other
variables within one day to represent the different categorization of time. These different
categories included year, month, weekday, and hour. For the variable RAIN, the total value was
used to represent the precipitation of the corresponding time period, while the variable wd was
used to represent the mode of the wind direction of the time period..

For the modeling dataset, we wrangled the dataset by grouping by the Date ymd format.
An example would be 2013-03-02 00:00:00, in which Year, Month, Day and Hour were
combined. Following this, we created a column value for maximum daily PM 2.5 values to
represent each entire day. An additional column created for the purpose of predicting maximum
PM 2.5 values for the next day called Max Tmrw_ PM2.5. In dealing with missing values, we
dropped these observations as the total proportion of them in relation to the dataset was only
2.9%, or 43 observations.

This entire modeling dataset was then split into training and testing dataframes, following
a 80:20 split. Different models would be trained based on the training dataset, and evaluated
using the performance of the model on the testing dataset.



We first applied the linear regression model to the training dataset and did stepwise
variable selection with BIC as the criteria because many of the predictors were insignificant.
After the variable selection, we were concerned about the assumptions for the linear regressions.
Therefore, we used a lot of methods to check whether the model fulfilled the assumptions of the
linear regression, like using VIF to check multicollinearity issues and some diagnosis plots to
check normality and constant residuals. For the diagnosis plots (see Appendix B), the normality
assumption was violated, which then forced us to consider using Box-Cox transformation in
order to fulfill the assumptions of linear regression. From the Box-Cox plot, we chose to
transform the response variable with the lambda to be 0.4. After the transformation, the diagnosis
plots, especially the plot related to the normality, would fulfill the requirement. We denoted the
model developed through this process as the transformed model.

In order to improve the performance of the linear regression model, we also tried Lasso
and Ridge regression with cross validation technique. Following the cross validation technique,
we could choose the corresponding best lambda as the one with the minimum mean
cross-validated error and refit the model.

Since the concentration of PM, 5 could be converted into a categorical variable,
Dangerous, High, Medium and Low, with the criteria mentioned above, we also tried two
different machine learning techniques: the Multinomial Regression Model and the
k-Nearest-Neighbor (KNN) Algorithm. For the multinomial regression model, we tried different
combinations of predictors and evaluated them based on the whole predicting accuracy. As for
the KNN algorithm, we tried k from 1 to 30 and chose the value of k to be the one with highest
predicting accuracy.

As for the comparison among models mentioned above, we first converted the
concentration of PM, s predicted by the transformed, Lasso and Ridge model into a categorical
one and evaluated the five different models based on two different criteria. The first criterion was
the total predicting accuracy, meaning the percentage of the model correctly predicting different
levels of PM, 5. The second criterion, denoted as underpredicted error, was about the numbers of
underpredicted observations, specifically Dangerous or High to be predicted as Medium or Low.
One assumption we had was that people should be careful and avoid going out in the category of
Dangerous or High of PM, s, while going out with the category of PM, 5 to be Medium or Low,
even with the prediction to be Dangerous or High, should be acceptable and not harm human
health. Although we wanted to have as few observations that are predicted incorrectly as
possible, considering our ultimate goal was to alarm situations of Dangerous or High to people
and prevent them from any outdoor activity to protect their health, predicting observations as
Dangerous or High that were actually Medium or Low may be acceptable in this case. Because
even though people may be alert, going out may not harm their health. But for the opposite
situation, predicting observations as Medium or Low, while the actual situation was Dangerous



or High, would not be acceptable, since people may not be alerted and go out that harm their
health.

Results

Visualizations

To determine what specific aspects that may influence PM, s levels, a set of visualizations
were produced based on the different time-series datasets.. The concentrations change based on
the time of day (hourly data), particular days in the week (weekday data), time of month

(monthly data), and time of year (seasonal changes). The visualizations, as well as their physical
and statistical significance, are shown below.

The average and maximum visualizations were compared with one another to see which
data would be more suited to explain changes in PM, 5 concentrations. The data was examined in
multiple ways to lead to the best warning system possible. In many of the trends shown below, it
is clear that maximum PM, s trends are better for developing more accurate early warning
systems as average values undermine the severity of pollutant levels at certain time trends.

Visualizations by year

Annual trends of PM, 5 data between March 2013 and February 2017 were taken to view any
important observations that may be important for analysis.
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Figure 1: Visualizations of maximum (left) and average (right) PM2.5 concentration
levels trend graph with respect to year

A set of visualizations were produced based on the different time-series datasets. Based
on ‘year’, the highest maximum PM, s concentration has been detected in 2014, and yet 2017 had
the highest average PM, 5 concentration. Considering that the dataset contains from March 1,
2013 to February 28, 2017, meaning that 2017 has only January and February, one possible naive



assumption would be that the winter months are more likely to have higher PM, 5 concentration
than the summer months. In other words, the PM, 5 concentration would go up as the temperature
goes down, indicating a negative correlation between them.

Since the data set was taken between the years of 2013 and 2017, it was deemed
important to analyze the trends between these years. We will focus on the dangerous category of
PM, 5 concentrations since these are relatively easier to notice then the other three levels. From
the yearly visualization data call mom we can see that there are different trends between the
maximum yearly PM, s data versus the average yearly PM, s data. It seems that maximum values
hit in 2014, when concentrations hit close to 800. However, the average values show a different
story, since the highest concentration seems to have occurred in 2017. This distinction is due to
the dangerous levels in comparison with other levels (i.e., high, medium, and low).

Visualizations by month

As for the trends of PM, s levels from monthly data, dangerous levels will most likely
occur in December and January with some extreme values. From the table of the average
concentration of PM, 5 for each month, it’s clear that December will suffer the most from the
pollutant. And in the winter, from October to March, people tend to suffer from the much worse
condition of PM, s.

Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct [ Nov | Dec

Max. | 767 | 770 | 458 | 533 | 337 | 500 | 375 | 276 | 311 | 468 | 546 | 741
PM,;

Avg. [204.2 [207.7 11929 | 153.1 [ 148.5 | 159.2 | 149.4 | 133.1 | 155.5 | 207.2 | 200.8 | 228.7
PM,

Table 2: Table of maximum and average PM, 5 concentration of ‘Dangerous’ level with respect to
month

Max_month_PM2.5 Avg_month_PM2.5
800 - (

@
<3
3

PM2.5_Type

Dangerous

PM2.5_Type

| Dangerous

-#~ High #- High

#- Medium E 100 ria i Sl ShE RS SEEES) SN SIS Sk SIS SR S Bl S B S S A b ~# Medium

Max_month_PM2.5
IS
8
8

2
g
)
.
;’5
3
jor]
"]
o
%)
=
I
2
00
%
n
F
l;
‘V\;
(o]

Low Low

N
1]
3




Figure 2: Visualizations of maximum (left) and average (right) PM, s concentration levels trend
graph with respect to month

Above are the table and visualizations of maximum and average PM, 5 concentration
based on months, and the naive intuition made in the year section was somewhat correct.
Although there are some spikes going up in April and June, the overall trend line starts to
decrease from March to August (Spring to Summer) and gradually increases from September to
December (Fall to Winter). These increases may be due to higher usage of heating systems from
residential, private, and public sectors, which may spread pollutants that travel at lower levels of
the atmosphere higher. Such reasons strengthen the assumption that the PM, 5 concentration is
more likely to be higher in the winter months compared to the summer months.

To conclude the monthly visualizations, we can look at the following figure.

WNW -

T whw - PM2.5_Type
W

Dangerous

= ]

2 M e

ol NE- I medium

o N

[V

Low

Figure 3: The frequency of wind direction based on monthly data
It seems as though wind direction is not consistent between the months of the year.
Overall, there seem to be quite a few bars in the north direction. However, this is not consistent
enough for us to make any conclusions based on the wind direction. Therefore, we will only

consider the PM, 5 data in our results.

Visualizations by weekday
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Figure 4: Visualizations of maximum (left) and average (right) PM2.5 concentration levels trend
graph with respect to weekday
(1=Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday, 7=Sunday)

For weekdays, both the maximum and average PM2.5 concentration trend graph seem to
increase on Thursday and reach their highest peak on Friday and Saturday. Starting from Sunday,
the graphs decrease, but soon climb slowly again and reach the second highest around Tuesday
and Wednesday. From these visualizations, some possible assumptions would be that the PM2.5
concentration is higher on Friday due to rush hours and nighttime activities after working hours
and more family-based outdoor activities on Saturday. Moreover, the heightened concentrations
on Tuesday and Wednesday may stem from the fact that many have to travel to work. Many
companies offer 3-day weekends, which may explain the decrease on Monday (for example), but
an increase in traveling for work may impact PM, s levels due to higher petroleum emissions.
Therefore, it would be advisable to inform the public to take precaution on the weekends
especially, as well as rush hours on weekdays.

To conclude the weekday change, we can look at the following figure:
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Figure 5: The frequency of wind direction based on Weekday data
(1=Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday, 7=Sunday)

Looking at the frequency of wind direction based on the days of the week, it seems as
though there are consistently dangerous levels in the north direction. Overall, there seem to be
quite a few bars in the north direction. We want to be especially aware of the “dangerous” level,
and the north direction has a lot of dangerous counts in particular.

Visualizations by hour
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Figure 6: Visualization of maximum (left) and average (right) PM2.5 concentration levels
trend graph with respect to hour
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Lastly, the PM, 5 concentration graphs reveal an interesting relationship with hour time.
Considering some possible factors that contribute to the PM, 5 level such as rush hours in the
early morning (7-9am) and evening hours (5-7pm), the concentrations during these time periods
show relatively lower levels than the afternoon (12-2pm) or nighttime (9pm-2am) hours.
Although we do see a spike right before midnight,and around 2am, where the maximum levels
reach around 800, there is a decline before the morning rush hour peaks. This may be a clue that
the PM, 5 level does not increase right away, but instead take a few hours to be concentrated and
measured. Therefore, any outdoor activity around the afternoon and nighttime hours may not be
recommended.

It is important to point out the significant difference in PM, 5 behavior based on the
maximum vs. average data. When we look at the average data, there does not seem to be
significant fluctuations depending on the time of day; the levels seem to be consistent at around
175. From the differences between the maximum and average values, we can definitively state
that using maximum data is more beneficial to developing a warning system for the public. The
average data may severely undermine PM, 5 levels at certain times of day, which can be harmful
to those with pre-existing health conditions.

Visualizations by relevant air pollutants and meteorological features
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Figure 7: Visualizations of some air pollutants and meteorological trait with similar or
opposite trend lines to the average PM, 5 concentration
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Beside time-series analyses, there are several other air pollutants that display almost
identical trend lines to the average PM, s such as PM,, and CO. This might indicate that these
variables may have strong positive correlations with the PM, s concentrations, which means that
the PM, s would increase as the PM,, and CO increase. On the other hand, WSPM (wind speed)
and O3 have opposite spikes, meaning that the PM, s concentrations would decrease when
WSPM and O3 increase.

To sum up, some significant trends of PM, 5 concentrations based on different time-series
were detected. There were noticeable ups in the winter months and downs in the summer
months. Also, Friday and Saturday were more likely to have higher concentrations, and this may
be due to relatively more outdoor activities compared to other weekdays. Moreover, the
nighttime and afternoon seemed to show higher spikes, therefore a suggestion of refraining
outdoor activities during these time periods may be helpful in terms of protecting people’s
health. Lastly, some air pollutants and meteorological features such as PM,, and CO follow
similar trends to PM, 5 concentrations while WSPM and O3 reveal opposite trends, and these
substances may be carefully monitored since this might be a signal of strong correlations with
PM, 5 and could potentially affect the modeling part later.

Correlations between different variables

Correlation Matrix of Numerical Predictors
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Figure 8: Correlation Coefficient Matrix of Numerical Predictors of Initial Model
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From Figure 8, some variables seemed to be highly correlated with PM, 5, such as PM,,
NO,, CO. Also, there may be some variables highly correlated with each other, such as the PM,,
and NO,, suggesting that there may be some multicollinearity issue when fitting the linear
regression model. But since we planned to use the variable selection procedures, we would still
be exploring the models from the saturated one.

PM, ; Models: Regression and Machine Learning techniques

Model Selection Methods

We have come up with five different models with the performance as in the following
table. Transformed, Lasso and Ridge Models were developed to predict the numeric outcome,
which was the actual number of concentration of PM, s, therefore they could have evaluations
like R? and adjusted R?. We would also use the threshold for PM, s to divide the concentration of
PM, s into four different categories, Dangerous, High, Medium and Low, and further compare
their performance with outcomes from the multinomial model and the KNN model with k to be 7
(see Appendix D).

Model R? Adjusted R? Level Prediction | Underpredicted
Accuracy Error

Transformed 0.285 0.269 171/283 =0.604 |17

Lasso 0.365 0.347 178/283 =0.627 |19

Ridge 0.362 0.339 177/283 =0.623 | 19

Multinomial X X 183/283 =0.644 |27

KNN X X 177/283 =0.623 |27

Table 3: Comparison of Performance among Models

Based on the first criterion as mentioned above related to the whole accuracy, the best
model selected should be the multinomial model, with the total accuracy to be 0.644. Lasso,
Ridge and KNN would perform similarly, with the accuracy to be around 0.62. Even the
transformed model would still have the accuracy to be around 0.6.

As for the second criteria which was related to the underpredicted error, as shown in

Table 3, the transformed model would have the lowest number of this type of error. Table 4 and
Table 5 further indicated the performance of the multinomial model and the transformed model
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in predicting different levels of PM, 5. The columns of the table would state the actual situation
of PM, 5, while the rows of the table would state the predicted situation of PM, .

Predicted \ Actual | Dangerous High Medium Low
Dangerous 156 29 24 13
High 0 0 0 0
Medium 10 13 26 7
Low 1 3 1 1

Table 4: Predicted vs Actual Labels Table of Multinomial Model

Predicted \ Actual | Dangerous High Medium Low
Dangerous 140 19 16 10
High 19 16 20 0
Medium 8 9 15 7
Low 0 0 0 0

Table 5: Predicted vs Actual Labels Table of Transformed Model

The multinomial model would have a higher total accuracy in predicting different levels,
as compared with the transformed model, except the category of High. It seemed that the
multinomial model would not predict the high level of the concentration of PM, 5. Furthermore,
based on the second criteria mentioned above, the multinomial model would have 27
underpredicted errors, while the transformed model would only have 17 underpredicted errors.
Under the situation with underpredicted errors, people would not be alerted for the harmful
situation of high concentration of PM, 5 and their health may be harmed due to this kind of
predicting error, while for the opposite situation, the overpredicted situation, would not harm
people’s health, but just making them be more careful, which was acceptable.

Following the discussion above, together with another reason that the multinomial model
could not predict the high level of the concentration of PM, 5, we recommended the transformed
model with the parameter of Box-Cox as 0.4 to be the final best model, with the corresponding
parameters shown in Table 6.
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Coefficients P - Value

Max_Day PM,; 0.0142 <De-16 ***
Avg_Day SO, -0.0398 1.30e-05 **x*
Avg Day NO, 0.0650 <De-16 ***
Avg Day_O; 0.0420 De-16
Avg_Day TEMP -0.202 <De-16 ***
Total Day Rain -0.093 2.27e-(7 ***
Avg Day WSPM -1.436 4.54e-15 ***

Table 6: Estimated Coefficients and p-values in the Transformed Model

From the coefficients and the p-values of all the predictors, it was clear that all the
predictors, the maximum value of PM, 5 in the previous day, the average value of SO,, NO,, O,
temperature and wind speed, together with the total amount of rain in the previous day would be
significant in predicting the values of PM, s in the future. Based on the coefficients of the
predictors, maximum value of PM, s, average value of NO, and Os;, in the previous day had a
positive correlation with PM, 5 in the future, while the average value of SO,, temperature and
wind speed in the previous day, as well as the total amount of rain in the previous day would
have a negative correlation with PM, 5 in the future.

Conclusions and Discussion

To conclude, there were many observations and predictions that could be made from the
visualizations shown and the models fitted.

First, looking at the visualizations, we can see from the monthly trends (which also
indicate any seasonal changes or impacts of PM, ) that the PM, 5 levels increase in the winter
months for example the highest maximum PM, 5 and average PM, 5 values occur around the
months of December through February. These results may be because of the heightened use of
heating systems in homes, public facilities, and workplaces. Moreover, ridges from high pressure
systems accompanied by relatively strong winds which bring in cooler air and carry pollutants
with it, may cause pollutants to remain close to populated source locations. Particulate matter
may be spread from vehicle exhausts, but it only rises high enough through higher wind speeds.
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Therefore, we suggest that people are careful of their surroundings when they step outside during
the winter months.

Moreover, we can note the increase in PM, 5 data depending on the weekday. As
explained before, PM, 5 concentrations increase during the weekend time, possibly due to
gatherings and an increase in travel, whether that be via air or personal vehicles. Therefore, we
would suggest the public to be careful during the weekend times and suggest the use of masks
for people especially with respiratory issues.

Lastly, the hourly data can provide insight into times of day that people should travel or
be cautious of higher concentrations of PM, 5 period. The graphs of the hourly data show an
increase in PM, 5 levels around the early morning around 6:00 AM evening around 5:00 PM and
night time. Therefore, people should be cognizant of their health, especially those with
pre-existing or respiratory conditions, around times of peak rush hour and nighttime (around
11pm). This may be a clue that the PM, s level does not increase right away, but instead take a
few hours to be concentrated and measured. Therefore, any outdoor activity around the afternoon
and nighttime hours may not be recommended.

For the second part of the study, we have developed five different models, the
transformed, Lasso, Ridge, Multinomial and KNN model. From the overall model, we can
predict tomorrow’s PM, 5 values based on today’s data, which allows for projections to ensure
caution and warnings to the public. As mentioned before, we have also developed two different
criteria to compare the performance of the five different models. For the first criteria related to
the overall accuracy rate, the best model selected should be the multinomial, while for the second
criteria of underpredicted errors, the best model should be the transformed model with much
fewer underpredicted errors, as compared with the multinomial model. Together with the reason
that the multinomial model could not predict the category of high concentration of PM, s, the best
model selected and recommended should be the transformed model from the linear regression
model via Box-Cox transformation with lambda to be 0.4.

For further interpretation from the transformed model, higher concentrations of PM, s,
NO,, O; in the present will result in higher concentrations of PM, s in the future. Lower SO,,
temperature, rain and wind speed will also result in higher future PM, 5 concentrations.

Overall, the information in this report provides a significant warning system of PM, s
levels. However, to improve the analysis, a couple of aspects can be considered. First of all,
although the times of day and days of the week show the times when concentrations of pollutants
are the highest, some other physical considerations are where the pollutants are coming from
(i.e., facilities or certain behaviors that are the main sources of pollutants). Moreover, a dataset
with less missing values will improve the overall accuracy of the model.
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Appendices

Appendix A: Extended version of all variables

Variable name Description
No. Row number
year year of data in this row
month month of data in this row
day day of data in this row
hour hour of data in this row
PM2.5 PM2.5 concentration (ug/m”3)
PM10 PM10 concentration (ug/m”3)
SO2 SO2 concentration (ug/m”3)
NO2 NO2 concentration (ug/m”3)
CO CO concentration (ug/m”3)
03 O3 concentration (ug/m”3)
TEMP Temperature (degree Celsius)
PRES Pressure (hPa)
DEWP dew point temperature (degree Celsius)
RAIN precipitation (mm)
wd wind direction
WSPM wind speed (m/s)
station name of the air-quality monitoring site

Table 1: Descriptions of All the Variables that are Presented in the Dataset
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Appendix B: Diagnosis Plots in Exploration of Linear Models
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Figure 1: Diagnosis Plots of the Saturated Model

Test Type

Test Value (p-value)

Breusch-Pagan (Constant Variance)

228.19 (< 2.2¢-16)

Shapiro-Wilk (Normality)

0.92 (< 2.2e-16)

Kolmogorov-Smirnov (Normality)

0.52 (< 2.2¢-16)

Leverages (Maximum)

0.30

Cook’s Distance (Maximum)

0.23

Table 2: Some Tests tried for the Assumptions
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Figure 3: Plots to Select the Value of Lambda in the Box-Cox Transformation to Fulfill the
Assumptions
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Figure 4: Diagnosis Plots of the Final Model

Test Type

Test Value (p-value)

Breusch-Pagan (Constant Variance)

103.55 (< 2.2¢-16)

Shapiro-Wilk (Normality)

0.98 (< 8.1e-13)

Kolmogorov-Smirnov (Normality)

0.28 (< 2.2¢-16)

Leverages (Maximum)

0.28

Cook’s Distance (Maximum)

0.17

Table 3: Some Tests tried for the Assumptions (Final Model)

21




Appendix C: Cross Validation of Lasso and Ridge Model
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Figure 5: Corresponding Cross Validation Plots for Lasso and Ridge Regression
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Log(%.)

Lasso Ridge

Max Day PM2.5 0.3641061 3.597283e-01
Avg Day PMI10 0.1297935 1.452975e-01
Avg Day SO2 -0.6011327 -6.854923e-01
Avg Day NO2 0.8876815 9.184284e-01
Avg Day CO - -5.341606e-04
Avg Day O3 0.5703099 6.065010e-01
Avg Day TEMP -2.7589021 -2.798371e+00
Avg Day PRES 1.1100001 1.172401e+00
Avg Day DEWP - -1.073800e-01
Total Day Rain -1.2873017 -1.302772e+00
Avg Day WSPM -23.2653461 -2.461248e+01

Table 4 : Coefficients for Lasso and Ridge Regression




Appendix D: Accuracy in Predicting Different Levels of KNN model with K from 1 to 30
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Figure 6: Accuracy of KNN model with K from 1 to 30
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Code and Data
The supporting code is provided in the accompanying STAT 443 Project.rmd file.
Contributions

e Junseok Yang: Mainly focused on writing the overall baseline codes, updating the codes
based on other group members’ feedbacks, and providing general explanation and
interpretation of both the visualizations and modeling results of the .Rmd file for other
group members to articulate the report.

e Lavanya Upadhyaya: Overall — Set up initial Github file and communication.
Mid-project and final presentation — introduction, visualization, and correlation analysis.
Some model analysis for next steps. Report — project abstract, introduction/data
description, methodology, visualization and correlation analysis, diagnostics (RMD file),
administered model analysis, conclusions and next steps.

e Mengjia Zeng: Contribute to the visualization part, build the Lasso, Ridge, multinomial
and KNN models in predicting, mainly focus on writing the codes in the rmd file.
Contribute to the Mid Check-in slides, final presentation slides and write the methods and
regression analysis parts of the final report.

e Wasay Siddiqui: Set up Git Flow on team member devices to enable proper collaboration
between code versions. Responsible for different sections within both of the mid-project
as well as final report. Provided input on presentation slides prior to submission for
modification as well as write-ups . Wrote methodology sections across reports, as well as
overviewing the final versions of both for clarity and summarization of results.
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