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1 Introduction

Dopamine is a neurotransmitter primarily produced in
the brain and kidneys. In the brain, this chemical serves
a wide array of functions, spanning basic motor control
to executive function. Dopamine is classified as a cate-
cholamine, which are a class of chemicals which are com-
posed of a catchetol, or o-dihydroxybenzene, ring with an
amine side chain. [1]

To achieve this chemical structure, dopamine biosyn-
thesis uses the amino acid tyrosine as a dopamine precur-
sor. The residue’s phenol ring is first hydroxylated at C3’
position, a reaction which is catalyzed by the enzyme ty-
rosine hydroxylase (Th). The product of this transforma-
tion, L-3,4-dihydroxyphenylalanine (L-DOPA), then un-
dergoes a decarboxylation reaction catalyzed by L-DOPA
decarboxylase (DDC) or aromatic amino acid decarboxy-
lase (AAAD) (See Fig. 1). [1]
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Figure 1: Biosynthesis of dopamine from tyrosine.
Tyrosine is first converted to L-DOPA by the enzyme ty-
rosine hydroxylase (TH), and subsequently, L-DOPA is
decarboxylated to dopamine by L-DOPA decarboxylase
(Ddc).

Dopamine biosynthesis has been primarily viewed as
a intracellular process, although in a recent paper, Molec-
ular, Spatial, and Functional Single-Cell Profiling of the
Hypothalamic Preoptic Region, it was demonstrated that
of 6 Th-enriched neuronal clusters the study identified,
only two were noted to also demonstrate enriched ex-
pression of Ddc, suggesting excessive production of L-
DOPA in some of these cells. [2] The paper focussed on
the hypothalamic preoptic (POA) region of the brain,
which plays roles in mating, modulating sleep, and me-
diating body temperature, using dopamine in all of these
processes. [3-5]. It has since been proposed that in
order for dopamine biosynthesis to be completed, Th-
enriched, Ddc-underexpressing (Th+/Ddec-) cells exocy-
tose L-DOPA to Ddc-enriched, Th-underexpressing (Th-
/Ddc+) cells.

Despite the validity of this hypothesis, this is not

the only possible explanation for this observation. Al-
though L-DOPA’s primary neurological role is acting as
a precursor to dopamine, it has been previously shown
to play a few of other physiological functions. For in-
stance, unlike dopamine, L-DOPA can pass through the
blood-brain barrier through which it can reach the pe-
ripheral nervous system and be converted into dopamine.
In addition to facilitating communication between the pe-
ripheral and central nervous systems, L-DOPA has been
shown to act as an antioxidant and help protect brain
tissue from damage by free radicals, is known to be
and effective anti-inflammatory, and has inhibitory ac-
tivity towards acetylcholinesterase. [6,7] To this end, in
this study, we aimed to further understand the molec-
ular profiles of the distinct classes of dopaminergic cells
(Th+/Ddc+, Th+/Ddc-, Th-/Ddc+, Th-/Ddc-), and de-
termine if functional-spatial analysis of the two classes of
partial dopaminergic cells supports the hypothesis that
Th+/Ddec- cells exocytose L-DOPA to Th-/Ddc+ cells
in order for dopamine biosynthesis to be completed, or if
some L-DOPA production in Th+4/Ddc- cells may serve to
support the metabolite’s understudied functions as an an-
tioxidant, anti-inflammatory, enzyme inhibitor, and sig-
nalling molecule.

2 Results

scRN A-seq analysis of the preoptic region

In our study, quality control measures were applied to the
single-cell RNA sequencing (scRNA-seq) data [8]. We re-
fined our dataset by applying filters based on the number
of detected genes (between 1000 and 5000 per cell) and to-
tal RNA counts (capped at 30,000), effectively excluding
potential outliers such as doublets or damaged cells. This
filtering ensured that our analyses would only include vi-
able, single cells, thus enhancing the accuracy of our find-
ings. Subsequent to these steps, data clustering was per-
formed, and the results were visualized in two dimensions
using Uniform Manifold Approximation and Projection
(UMAP) techniques [9]. To examine the expression pat-
terns of the primary genes under study, namely Ddc and
Th, their distribution was analyzed across various cellu-
lar clusters (refer to Fig. 2). It was observed that neither
Ddc nor Th is exclusive to a single cluster; rather, their
expression spans multiple cellular clusters, as depicted in
Fig. 2.



Ddc Th
4
101 .
: 3
l.'\ll 2
g 01 -
E P 1
=}
0 0
-10 / -10 1

N B S B B
-10-5 0 5 10 15
umap_1

_——TT T T T
-10-5 0 5 1015
umap_1

Figure 2: Comparative Distribution of Ddc and Th
Gene Expression in Neuronal Populations. The left
panel (Ddc) and right panel (Th) depict the spatial gene
expression patterns visualized via Uniform Manifold Ap-
proximation and Projection (UMAP) analysis. Each dot
represents an individual cell, with the color intensity re-
flecting the expression level of Ddc (left) and Th (right)
genes, respectively, as indicated by the color scale from 0
(no expression) to 3 (high expression). The plots demon-
strate that both genes are expressed in different clusters.

Subsequently, cell categorization was conducted uti-
lizing Uniform Manifold Approximation and Projection
(UMAP) based on gene expression profiles, delineating
cells into four principal clusters: Ddc- Th-, Ddc+ Th+,
Ddc+ Th-, and Ddc- Th+. This classification aims to
evaluate whether cells sharing similar expression patterns
spatially congregate within the same regions of the con-
structed UMAP space.
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Figure 3: MAP Visualization of Cell Class Distri-
bution Based on Ddc and Th Gene Expression.
This UMAP plot showcases the spatial distribution of
four distinct cell classes colored by their gene expression
profiles: Ddc-Th- (blue), Ddc+Th+ (green), Ddc+Th-
(red), and Ddc-Th+ (gray). The diverse clustering pat-
terns observed across different areas emphasize the het-
erogeneity of gene expression within these populations.

As illustrated in Fig. 3, a significant majority of the
cells fall within the Ddc- Th- category, while a notably
smaller fraction is classified as Ddc+ Th+. The remain-
ing cells, which are categorized as either Ddc+ Th- or

Ddc- Th+, exhibit a more dispersed distribution across
the UMAP space. This dispersion suggests that while
Ddc and Th expression plays a critical role in cellular
categorization, additional factors may influence cluster
assignment within the UMAP representation, indicating
the complexity of the gene expression landscape in defin-
ing cellular phenotypes.

MERFISH measurements of the preoptic
region

Analysis of the single-cell RNA sequencing (scRNA-
seq) data provided evidence for the presence of partial
dopaminergic neurons. The subsequent phase of this
research involves mapping these cells within the Multi-
plexed Error-Robust Fluorescence In Situ Hybridization
(MERFISH) dataset, which includes spatial information.
The proximity of Th+;Ddc- cells to Th-;Ddc+ cells could
support the hypothesis that the former group exocytoses
L-DOPA to the latter to facilitate dopamine synthesis.

However, a challenge is posed by the absence of Ddc
gene expression data in the MERFISH dataset, which
only contains Th expression data. Additionally, the
MERFISH dataset presented issues with missing values
in the gene expression profiles. To address this, we im-
plemented median imputation to fill these gaps, ensuring
a more robust dataset for analysis. Following this prepro-
cessing step, we employed a machine learning framework
to infer the Ddc expression status using the available gene
expression profiles. We developed a classifier trained on
the scRNA-seq data, designed to predict the Ddc status
by leveraging 156 genes shared between the scRNA-seq
and MERFISH datasets. This approach enables an indi-
rect, yet robust, assessment of Ddc expression within the
spatially-resolved MERFISH dataset.

To ensure compatibility between the datasets, gene
expression values were normalized within a range of 0
to 1. For the training of the classifier, we partitioned
the scRNA-seq data into 80% for training and 20% for
validation to assess the model’s performance on unseen
data. Another issue addressed was the class imbalance in
the training data, with Ddc- samples outnumbering Ddc+
by nearly sixfold. This required careful consideration to
maintain classifier accuracy. We evaluated multiple algo-
rithms, including Multi-Layer Perceptrons (MLPs) [10],
Support Vector Machines (SVM) [11], Decision Trees [12],
XGBoost [13], Logistic Regression [14], and a composite
Voting Classifier [15] utilizing both hard and soft voting
strategies. Despite considering regression models to ex-
ploit potential gene regulatory networks influencing Ddc
expression, classification approaches proved more effec-
tive.

Logistic Regression was ultimately selected for its su-
perior performance, achieving an approximate accuracy
of 70% on the validation set. Applying this classifier
to the MERFISH dataset allowed for the determination
of Ddc expression statuses, revealing counts of 559,627
Ddc+ cells and 468,221 Ddc- cells. Integration of Th
expression data from the same MERFISH dataset en-
abled comprehensive profiling of cell populations, yielding



counts of 336,478 Ddc+ Th-, 284,668 Ddc- Th-, 223,149
Ddc+ Th+, and 183,553 Ddc- Th+ cells. This integrated
approach provides a detailed mapping of cellular inter-
actions essential for understanding dopamine synthesis
mechanisms within the brain’s spatial architecture.

Now equipped with the Ddc and Th status of cells,
we utilized the MERFISH dataset’s spatial data to visu-
alize the distribution of cells and examine their proximity
within actual tissue sections. To validate the hypothesis
that TH+; Ddc- cells exocytose L-DOPA to TH-; Ddc+
cells for dopamine synthesis, we analyzed their spatial
distribution using the provided coordinates. This analy-
sis aimed to determine if these cells are closely positioned,
supporting the proposed intercellular interaction among
partial dopaminergic neurons. Figure 4 displays only two
slices from a total of 182 distinct slices, clearly show-
ing that the two types of partial dopaminergic cells are
quite well mixed with each other. This spatial analysis
is crucial for understanding the functional architecture of
dopaminergic signaling within the tissue.

Animal ID: 1, Bregma: 0.16, Sex: Female

Animal ID: 7, Bregma: 0.11, Sex: Male
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Figure 4: Spatial Distribution of Neuronal Cell
Classes Based on Ddc and Th Gene Expression
in Different Sexes and Bregma Locations. This vi-
sualization presents the distribution of four cell classes
across two animals: Animal ID 1 (Female, Bregma 0.16)
and Animal ID 7 (Male, Bregma 0.11). Each cell is color-
coded by class—Ddec- Th- (gray), Ddc- Th+ (blue), Dde+
Th- (red), Ddc+ Th+ (green). The widespread distri-
bution of these classes in various brain regions supports
the hypothesis that TH+;Ddc- cells exocytose L-DOPA
to nearby TH-;Ddc+ cells, facilitating dopamine synthe-
sis across different neuronal clusters as proposed. This
pattern underlines potential mechanistic interactions and
supports the existence of a spatially mediated dopamin-
ergic synthesis pathway in the brain.

Due to the large number of tissue slices, examining
each one individually was impractical. To systematically
assess the degree of mixing between Ddc+ Th- and Ddc-
Th+ cells across all slices, we implemented a quantitative
approach by measuring the distance from each Ddc- Th+
cell to its nearest Ddc+ Th- neighbor and averaging these
distances. As shown in Figure 6, the relatively unimodal
distribution of these distances supports the observation of
a consistent mixture of these two neuronal types across
all samples. This consistent pattern indicates potential
intercellular interactions that facilitate dopamine synthe-
sis, aligning with the proposed hypothesis.
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Figure 5: Histogram of Average Nearest Neigh-
bor Distances Between Ddc+ Th- and Ddc- Th+
Neuronal Classes Across Different Animals and
Bregma Locations. This histogram represents the dis-
tribution of average nearest neighbor distances measured
in micrometers (nm). The distances were computed using
point pattern analysis where each point represents a neu-
ron labeled as either Ddc+ Th- or Ddc- Th+. The analy-
sis was conducted for unique combinations of animal 1D,
bregma, and sex, focusing on the proximity between the
two specified classes within each subset. The relatively
unimodal distribution of distances supports the observa-
tion of a consistent mixture of these two neuronal types
across all samples, indicating potential intercellular inter-
actions that facilitate dopamine synthesis as proposed.

Observations of relatively large average nearest neigh-
bor distances in Figure 5 prompted a closer examination
of those specific tissue sections to analyze their cellular
distribution patterns. In Figure 6, a snapshot of the slice
with the highest average nearest neighbor distance is pre-
sented. Despite some degree of mixing between Ddc+
Th- and Ddc- Th+ cells, it is evident that these cells
predominantly cluster in two distinct areas.

This clustering suggests a spatial segregation that
might imply functional differentiation or a stage of de-
velopmental transition within the tissue. Such patterns
could potentially influence the efficiency of dopamine
synthesis if the physical separation affects the transfer
of L-DOPA between TH+; Ddc- cells and TH-; Ddc+
cells. Future investigations might explore the biochem-
ical and signaling pathways that underlie these spatial
arrangements to better understand their impact on neu-
ronal function and intercellular communication within the
brain.

The observed clustering and spatial distribution pat-
terns noted in the previous analysis raise questions about
other factors that might influence the arrangement of neu-
ronal types within the tissue. To explore potential varia-
tions in spatial dynamics further, we extended our analy-
sis to examine whether there are sex-based differences in
the distribution of Ddc+ Th- and Ddc- Th+ cells across
different animal samples.



Animal ID: 19, Bregma: 0.11, Sex: Female
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Figure 6: Spatial Distribution of Neuronal Classes
in Animal ID 19, Female, Bregma 0.11. This plot
illustrates the distribution of four neuronal classes—Ddc-
Th- (gray), Dde- Th+ (blue), Ddc+ Th- (red), and
Ddc+ Th+ (green)—highlighting their spatial arrange-
ment within the sample. This specific example shows
the highest average nearest neighbor distances between
the Ddc+ Th- and Ddc- Th+ classes among all analyzed
samples. Notably, a certain level of separation between
these two classes is observed, suggesting distinct spatial
domains and potentially different functional interactions
within this particular brain region.

Figure 7 presents a bar chart comparing the mean
average nearest neighbor (NN) distances between these
neuronal classes, categorized by animal sex. The data for
both female (red) and male (teal) animals show similar
mean distances, indicating no significant sex-based differ-
ences in the spatial distribution of these neuronal classes.
The inclusion of error bars, representing the standard er-
ror of the mean, underscores the consistency of these mea-
surements within each sex category. This consistency sug-
gests that the spatial integration of these neuronal types
is a robust feature across sexes, further supporting the
universality of the observed intercellular interactions that
facilitate dopamine synthesis.

Building on the analysis of spatial distributions by
animal sex, we also examined the mean average near-
est neighbor (NN) distances across different cell classes
themselves. This additional layer of analysis was aimed
at discerning whether intrinsic differences exist between
the neuronal types in terms of their proximity to each
other. The results revealed very similar mean NN dis-
tances between the different cell classes, suggesting a uni-
form spatial arrangement irrespective of the specific neu-
ronal type. This uniformity indicates that the proximity
required for intercellular communication and dopamine
synthesis is maintained across different cell classes, rein-
forcing the hypothesis of a tightly regulated neurochem-
ical environment within the tissue. This consistent spac-
ing among all classes further supports the notion of a
well-integrated dopaminergic network, critical for efficient
neural functioning.
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Figure 7: Comparison of Mean Average Near-
est Neighbor (NN) Distances Between Neuronal
Classes by Animal Sex. This bar chart displays the
mean average nearest neighbor distances between the
neuronal classes Ddc+ Th- and Ddc- Th+ across differ-
ent samples, categorized by animal sex. Both female (red)
and male (teal) animals show similar mean distances, in-
dicating no significant sex-based differences in the spatial
distribution of these neuronal classes. Error bars rep-
resent the standard error of the mean, underscoring the
consistency of the measurements within each sex cate-

gory.

Spatial Auto-correlation

There are several methods to compare and test whether
there exists evidence of difference in spatial location be-
tween groups, and we implemented the spatial auto-
correlation using Moran’s I statistic. It is a metric which
allows us to check whether the spatial data shows a pat-
tern of clustered (I close to 1), dispersed (I close to -1),
or randomly spread out (I around 0) [16] By computing
the I statistic for Th+;Ddc and Th-;Ddc, we then set up a
hypothesis for all distinct combination of ’Animal ID’ and
"‘Bregma’ (total 181) to test whether there is a difference
of the statistics between these two group.
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The null hypothesis states that there is no significant
difference of spatial auto-correlation between Th+;Ddc-
and Th-;Ddc+ whereas the alternative supports that
there is a significant spatial difference between the groups.
Permutation test was also adapted for the purpose of val-
idating the hypothesis test. By randomly shuffling the
data label (Th+;Ddec- and Th-;Ddec+), the I statistics
and their difference were computed again for every itera-
tion of the test to check whether the observed difference
we got from the original data do show a significant pat-
tern of spatial difference between the groups or simply
detected by random chance. From the p-value yielded
from the permutation test, we combined all the hypothe-
sis tests we set up for each animal ID and Bregma region



to conduct multiple hypothesis testing, ultimately to see
whether there is a statistically significant evidence of spa-
tial distribution difference between the two groups overall.
False Discovery Rate (FDR) was applied to do the multi-
ple testing, and 78 out of 181 hypotheses yielded a p-value
lower than the adjusted p-value. Consequently, the result
suggested that there exists a spatial auto-correlation dif-
ference between the groups.
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Figure 8: Spatial Distribution of Th+;Ddc- and Th-
;Ddc+ of Animal ID 36, Bregma 0.16 These scat-
terplots visualize the cells mapping of Th+;Ddc- (Blue)
and Th-;Ddc+ (orange) of the sample with the largest
Moran’s I statistics difference. It is clear to detect the
spatial difference between the groups, specifically the for-
mer group cells tend to be somewhat randomly spread
(leftmost plot, I statistic: -0.109) while there is a cluster
with cells concentrated at the top right corner for the lat-
ter group (middle plot, I statistic: 0.523).
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Figure 9: Spatial Distribution of Th+;Ddc- and Th-
;Ddc+ of Animal ID 20, Bregma 0.21 These scatter-
plots visualize the cells mapping of Th+;Ddc- (Blue) and
Th-;Ddc+ (orange) of the sample with the second largest
Moran’s I statistics difference. As opposite to the previ-
ous figure, this sample has a positive I statistics (0.284,
clustered) in Th+;Ddc- and negative I statistics (-0.147,
dispersed) in Th-;Ddc+. Dispersed spatial indicates that
the neighboring locations tend to have dissimilar values,
which somewhat agrees that the cells for Th-;Ddc+ are
mostly concentrated at the center while Th+;Ddc- cells
seem to surround those cells.

To sum up, we were able to find the evidence of
spatial difference between TH+;DDC- and TH-;DDC+
from both the test results and visualizations above. By
connecting our findings to the research question, this
strengthens that there is a notable process that affects
the exocytosis activity of L-DOPA from Th+;Ddc- to
Th-;Ddc+. However, the samples considered to be sig-
nificant in terms of spatial difference had relatively small
magnitude of Moran’s I statistic around -0.3 to 0.3, which
suggest somewhat weak to random patterns in the spatial

visualizations in general. Furthermore, it is possible that
the significant distribution disparities we saw from some
samples might be due to unbalanced sample sizes between
two groups. As a result, it is still necessary to be cautious
even if the results suggest there exists notable evidence.

Bregma Count +/— —/+ AvglI Diff
-0.29 4 1 3 0.288
-0.24 1 0 1 0.225
-0.19 4 2 2 0.290
-0.14 4 1 0 0.172
-0.09 6 2 1 0.236
-0.04 4 4 0 0.340
0.01 3 2 1 0.409
0.06 3 1 1 0.321
0.11 12 6 3 0.263
0.16 14 6 7 0.309
0.21 13 8 1 0.308
0.26 10 4 6 0.267

Table 1: Summary Table of Significant Hypotheses
The table above shows the total count of significant hy-
potheses (first column), number of hypotheses with pos-
itive Moran’s I statistic for Th+;Ddc- and negative for
Th-;Ddc+ (+/-, third column), vice versa (-/+, fourth
column), and the average magnitude of I statistics differ-
ence between the groups (fifth column) by Bregma. It is
clear that Bregma 0.16 had the most significant hypothe-
ses, followed by 0.21 and 0.11 with relatively large average
differences. Specifically for Bregma 0.21, it shows notably
consistent trend of positive I statistics for Th+;Ddc- and
negative for Th-;Ddc+ (8 out of 13), which could be a
signal that the spatial distribution of exocytosis activity
tends to change from cluster-concentrated to disperse or
random spread out.

3 Discussion

The findings from our scRNA-seq and MERFISH analy-
ses offer insightful revelations about the spatial dynam-
ics and molecular characteristics of partially dopaminer-
gic neurons within the POA. The scRNA-seq data re-
veals that Ddc and Th genes are expressed across mul-
tiple cellular clusters instead of associating exclusively
within a single cluster. This suggests a subtle interac-
tion of these genes in neuron function and dopaminer-
gic signaling pathways, possibly reflecting a spectrum of
neuron maturation stages or functional states within the
brain tissue [17,18].

Using UMAP for visualization, we can further under-
stand the cellular heterogeneity and the spatial organi-
zation of neuronal types. Cells are divided into prin-
cipal clusters based on Ddc and Th expression profiles,
which emphasizes the potential for diverse functional roles
among these cells dictated by their molecular signatures.
This clustering pattern highlights the plasticity within
dopaminergic circuits, which could be crucial for the
adaptive responses of neural networks in the brain [19,20].

Integrating scRNA-seq findings with spatial data from
the MERFISH dataset allowed us to bridge the gap



between molecular expression and physical positioning
within the brain. Although there are some missing values
in gene expression in the MERFISH, the machine learn-
ing approaches we tried help us interprete this biological
dataset [21,22].. Applying Logistic Regression, the one
shows a high accuracy, we found that the cells are closely
positioned. This spatial distribution is significant for fur-
ther analysis of interaction among partial dopaminergic
neurons.

The spatial distribution analysis of the target dataset
points out there is no significant sex-based differences in
the arrangement of neuronal classes, which further em-
phasizes the fundamental nature of dopaminergic signal-
ing mechanisms as consistent across sexes. This finding
is particularly relevant in the context of neurological dis-
eases that may exhibit sex-specific prevalence or symp-
toms, suggesting that the basic dopaminergic architecture
remains stable across genders, possibly affected more by
external factors or later- life experiences than by inherent
sex-linked genetic differences [23,24].

Moreover, evaluating the distance between every Ddc-
Th+ and its nearest neighbor Ddc+ Th- and calculating
the mean, we figured out potential intereaction between
cells that promote dopamine synthesis exists. This could
imply a more integrative and less compartmentalized ar-
rangement within the dopaminergic systems, potentially
facilitating versatile interactions necessary for complex
brain functions such as mood regulation, reward process-
ing, and motor control [25,26].

Utilizing Moran’s I statistics and multiple hypoth-
esis testing to detect spatial auto-correlation between
Th-+;Ddc- and Th-;dc+ cells across various brain sections
and obtain quantitative measures of their proximity, we
were able to provide notable evidence of spatial differ-
ence of dopamine synthesis. Although there was no gen-
eral trend detected across the cells, sufficient number of
cells still mapped a consistent pattern of spatial distri-
bution from concentrated to dispersed/random or vice
versa. The changes of both the cells’ location and over-
all shape may be an indication that L-DOPA exocytosis
activity from Th+;Ddc- cells to nearby Th-;Ddc+ cells
could be a crucial mechanism affecting and enabling ef-
ficient dopamine production within spatially structured
neuronal networks. This could represent a foundational
mechanism underlying the robustness of dopaminergic
neurotransmission, especially in regions critical for motor
and cognitive functions [27,28]. Alternatively, this could
be an indication that the L-DOPA and dopamine biosyn-
thetic landscape is dynamic and has evolved in a man-
ner allowing it to facilitate both completion of dopamine
biosynthesis when necessary and supporting the alterna-
tive physiological functions of L-DOPA when needed. [6,7]
Nonetheless, one should be aware of adapting the analy-
ses as there are many factors which can affect the results
such as different methods of data pre-processing, hyper-
parameters selection, etc.

Future research should aim to expand upon these find-
ings by incorporating more dynamic assessments of neu-
ron activity and interactions, potentially through live
imaging or more sophisticated spatial transcriptomics

techniques. Additionally, exploring the biochemical path-
ways that enable L-DOPA transfer and dopamine syn-
thesis within these identified neuron clusters could unveil
new therapeutic targets for enhancing dopaminergic func-
tion in pathological states such as Parkinson’s disease and
depression [29, 30].

In conclusion, our comprehensive analysis not only
sheds light on the cellular architecture and molecular di-
versity of dopaminergic neurons but also enhances our
understanding of the spatial and functional integration
within the brain. This integration is vital for the coor-
dinated activity necessary for effective neurotransmission
and overall brain health, offering valuable insights into
the complexities of neural systems biology [31, 32].

Contributions

EH performed the scRNA-seq analysis, developed the
classifier, implemented the average nearest neighbor al-
gorithm, and wrote the corresponding results and discus-
sion sections. JY performed the Spatial Auto-correlation
analysis, authored that section, and contributed to the
discussion. SB wrote the introduction and edited the doc-
ument. SS contributed to the discussion part.

References

[1] David S. Goldstein. Catecholamines 101.
Autonomic Research, 20(6):331-352, 2010.

Clinical

[2] Jeffrey R. Moffitt, Dhananjay Bambah-Mukku,
Stephen W. Eichhorn, FEric Vaughn, Karthik
Shekhar, Julio D. Perez, Nimrod D. Rubinstein, Jun-
jie Hao, Aviv Regev, Catherine Dulac, and Xiaowei
Zhuang. Molecular, spatial, and functional single-cell
profiling of the hypothalamic preoptic region. Sci-
ence, 362(6416):165-171, 2004.

[3] Stephen X. Zhang, Andrew Lutas, Shang Yang,
Adriana Diaz, Hugo Fluhr, Georg Nagel, Shigiang
Gao, and Mark L. Andermann. Hypothalamic
dopamine neurons motivate mating through persis-
tent camp signalling. Nature, 597(7875):245-249,
2021.

[4] Irma Gvilia, Feng Xu, and Ronald Szymisiak. Home-
ostatic regulation of sleep: A role for preoptic area
neurons. The Journal of Neuoscience, 26(37):9426—
9433, 2006.

[5] Renata C.H. Barros, Luiz G.S. Branco, and Evelin C.
Cérnio. Evidence for thermoregulation by dopamine
d1 and d2 receptors in the anteroventral preoptic re-
gion during normoxia and hypoxia. Brain Research,
1030(2), 2018.

[6] Jeremy P.E. Spencer, Andrew Jenner, John Butler,
Okezie I. Aruoma, David T. Dexter, Peter Jenner,
and Barry Halliwell. Evaluation of the pro-oxidant
and antioxidant actions of l-dopa and dopamine in



[13]

[14]

[18]

[20]

vitro: Implications for parkinson’s disease. Free Rad-
ical Research, 24(2):95-105, 1996.

Lili Arabuli, Petra Lovecka, Rudolf Jezek, Vik-
torovam Jitka, Tomas Macek, Petra Junkova, Ramaz
Gakhokidze, Fariborz Sharifianjazi, Amirhossein Es-
maeilkhanian, Peyman Salahsour, Parnian Poursafa,
and Parisa Sabouri. Ache inhibitory effect, anti-
oxidant and anti-inflammatory properties of cyclen
and l-dopa related compounds: Targeting in neu-
rodegenerative disease. Journal of Molecular Struc-

ture, 1287, 2023.

Satija Lab. Pbmc 3k guided tutorial.
https://satijalab.org/seurat/articles/
pbmec3k_tutorial, 2023. Accessed: 2023-05-12.

Leland MecIlnnes and John Healy. Umap:
Uniform manifold approximation and projection
for dimension reduction. https://umap-learn.
readthedocs.io, 2023. Accessed: 2023-05-12.

Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep Learning. MIT Press, 2016.

Christopher M Bishop. Pattern Recognition and Ma-
chine Learning. Springer, 2006.

Pang-Ning Tan, Michael Steinbach, and Vipin Ku-
mar. Introduction to Data Mining. Pearson Educa-
tion, 2005.

Max Kuhn and Kjell Johnson.
Modeling. Springer, 2013.

Applied Predictive

Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series
in Statistics, 2009.

Ankit Dixit. Ensemble Machine Learning: Methods
and Applications. Springer, 2018.

Arthur Getis and J. K. Ord. The analysis of spatial
association by use of distance statistics. Geographical
Analysis, 24(3), 1992.

Stephan Lammel, Byung Kook Lim, Caroline Ran,
Kevin W Huang, M. James Betley, Kay M Tye,
Karl Deisseroth, and Robert C Malenka. Projection-
specific modulation of dopamine neuron synapses by
aversive and rewarding stimuli. Neuron, 82(5):1039-
1053, 2014.

Anthony A Grace. Regulation of dopamine neu-
ron activity and its implications for the functional
roles of dopamine. Biochemical Society Transactions,
2016.

Jean-Martin Beaulieu, Tatyana D Sotnikova,
Raul R Gainetdinov, and Marc G Caron. An
akt/beta-arrestin 2/pp2a signaling complex medi-
ates dopaminergic neurotransmission and behavior.

Cell, 122(2):261-273, 2005.

David Sulzer. Multiple hit hypotheses for dopamine
neuron loss in parkinson’s disease. Trends in Neuro-
sciences, 30(5):244-250, 2007.

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[30]

Xuyu Zhang, Tian Li, Fei Liu, Yu Chen, Jian Yao,
Zixiao Li, Yanyi Huang, and Jian Wang. Integrating
single-cell transcriptomic data across different condi-
tions, technologies, and species. Nature Biotechnol-
ogy, 37:547-555, 2019.

Taesup Kim, Youngjun Song, and Kwang-Hyun Cho.
Deep learning approaches to biological image recon-
struction. Bioinformatics, 2020.

Glenda E Gillies and Simon McArthur. Sex differ-
ences in parkinson’s disease and other movement dis-
orders. Ezxperimental Neurology, 259:44-56, 2014.

Jill B Becker and Elena Chartoff. Sex differences
in drug abuse. Frontiers in Neuroendocrinology,
35(1):36-47, 2016.

Roshan Cools, Angela C Roberts, and Trevor W
Robbins. Serotonin and dopamine: Unifying affec-
tive, activational, and decision functions. Neuropsy-
chopharmacology, 36(1):98-113, 2011.

Roy A Wise. Dopamine, learning and motivation.
Nature Reviews Neuroscience, 5(6):483-494, 2014.

Charles R Gerfen and D James Surmeier. Basal gan-
glia. The Rat Nervous System, pages 441-484, 2011.

André Nieoullon. Dopamine and the regulation of
cognition and attention. Progress in Neurobiology,

67(1):53-83, 2002.

Jose A Obeso, Maria Stamelou, Christopher G
Goetz, Werner Poewe, Anthony E Lang, Daniel
Weintraub, David Burn, Glenda M Halliday, Er-
wan Bezard, Serge Przedborski, Stephane Lehericy,
David J Brooks, John C Rothwell, Mark Hallett,
Mahlon R DeLong, Connie Marras, Caroline M Tan-
ner, G Webster Ross, J William Langston, Chris-
tine Klein, Vincenzo Bonifati, Joseph Jankovic, An-
dres M Lozano, Giinter Deuschl, Hagai Bergman,
Eduardo Tolosa, Mayela Rodriguez-Violante, Stan-
ley Fahn, Paul Krack, Connie Marras, Daniel
Mendelsohn, Peter Riederer, Anthony HV Schapira,
and Werner Poewe. Past, present, and future of
parkinson’s disease: A special essay on the 200th an-
niversary of the shaking palsy. Movement Disorders,
32(9):1264-1310, 2017.

Barbara Picconi, Diego Centonze, Kerstin
Hékansson, Giorgio Bernardi, Paolo Calabresi,
Paul Greengard, and Gilberto Fisone. Loss of

bidirectional striatal synaptic plasticity in l-dopa-
induced dyskinesia. Nature Neuroscience, 9(6):501,
2008.

Karl Deisseroth. Optogenetics: 10 years of micro-
bial opsins in neuroscience. Nature Neuroscience,
18(9):1213-1225, 2015.

D James Surmeier, Jose A Obeso, and Glenda M
Halliday. Dopaminergic modulation of striatal net-
works in health and parkinson’s disease. Current
Opinion in Neurobiology, 48:88-96, 2017.



